AAFKE SCHIPPER DEPARTMENT OF ENVIRONMENTAL SCIENCE

INSTITUTE FOR WATER AND WETLAND RESEARCH

# Modelling the costs of chemical impacts on wildlife populations

The case of peregrine falcons (*Falco peregrinus*) exposed to PBDEs

# CADASTER Workshop 08-09 October 2012



## Background

## REACH

- Protection of human health and the environment
- Enhance innovation and competitiveness of the EU chemicals industry
- $\rightarrow$  risks versus benefits of chemicals



#### Background

- Cost–benefit analysis (CBA)
- External costs: costs not included in the market price
- $\rightarrow$  how to quantify costs of chemical impacts on non-market ecosystem properties?



## Aim

Quantify the costs of chemical impacts on wildlife populations





## Approach

- Matrix population model
- Year-to-year population dynamics based on a transition matrix
- Vital rates: growth, survival and fecundity per age/stage class
- Vital rates influenced by population density and exposure to chemicals
- $\rightarrow$  transition matrix as function of population density and exposure concentrations



### Approach

- Dominant eigenvalue of the transition matrix is the population growth rate  $\boldsymbol{\lambda}$
- Right eigenvector of the matrix is the stable age or stable stage distribution
- $\rightarrow$  calculate equilibrium population per toxicant exposure concentration: solve the transition matrix for  $\lambda = 1$
- → if equilibrium population < user-defined minimum: calculate number of individuals needed to restore the equilibrium population
- $\rightarrow$  replacement costs



#### **Case study**

Costs of PBDE impacts on a population of peregrine falcons

Why this case?

- Data availability
  - population parameters
  - exposure concentrations
  - toxicological data
  - replacement cost estimates
- High PBDE concentrations in eggs





#### **Case study – transition matrix**

- Three life stages: juveniles, non-breeding birds, breeders
- Fecundity modelled as function of exposure to PBDEs





#### **Case study – transition matrix**

• Density-dependence modelled as the probability of a non-breeding bird to aquire a breeding territory





## **Case study – transition matrix**

Transition matrix

$$A = \begin{bmatrix} 0 & S_{nb}F_{C}P_{b} & S_{b}F_{C} \\ S_{j} & S_{nb}(1-P_{b}) & 0 \\ 0 & S_{nb}P_{b} & S_{b} \end{bmatrix}$$

F fecundity

S survival

 $P_b$  probability of a non-breeder to acquire a breeding territory

- *j* juvenile
- nb non-breeding sub-adult
- *b* breeding adult



#### **Case study – model testing**

- Simulate population from 1981 through 2007 and compare with observations
- Exposure concentrations:



#### **Case study – model testing**

• Population development as function of exposure to PBDEs:





#### **Case study – model testing**

• Population development as function of exposure to PBDEs and DDE:





#### **Case study – results**

#### Equilibrium population size (breeders) in relation to PBDE exposure



A CLINE A CONTRACTOR

#### **Case study – results**

Number of young birds needed per year



#### Case study – results

Costs per year





## Conclusions

- Quantitative approach to calculate replacement costs
- Results are population-specific:
  - population parameters (fecundity, survival, density-dependence)
  - concentration-response curve (EC50 and slope)
  - replacement costs per individual
- Density-dependence may mask toxicant impacts on wildlife populations
- Multi-stressor approach needed



## Outlook

- Application to other species
- Application to other stressors (including interactions)



#### Thanks a lot to:

- Matthew Kauffman (U.S. Geological Survey)
- Harrie Hendriks (Radboud University Nijmegen)
- Jan Hendriks (Radboud University Nijmegen)
- Mark Huijbregts (Radboud University Nijmegen)

• EU - CADASTER

