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ABSTRACT MATERIAL AND METHODS
The ion of linear regression QSAR models p both in fitting and external prediction, is of pivotal imp [1][2]. In the | | Datasets are i at random, ing a i istribution, by means of a custom simulation software. For every dataset,
last decade different external validati have been proposed: Q% (Shi) [3], Q% ( ) [4], Q% (Todeschini) [5], average | | different level of biases (location, scale and scale plus location shlft) have been applled for different levels of data scattering (ranging
12, (Roy) [6] and the Golbraikh ~Tropsha (GT) method [7]. R ly, the d i fficient (CCC, Lin) [8] has been proposed | | from 0 to 0.06), resulting on a total of 9x10¢ of datasets. Every new int p hold is calculated g 100 datasets.
by our group as an extemal validation parameter to be used in QSAR studies. In our recent work, published in 2011 on JCIM [9], we have
shown that, paring with the ly used hresholds (Q%,=0.6, average r2,=0.5), the d
threshold value (=0. 85) is usually the most restnctlve in the acceptance of QSAR models as externally predictive. This fact suggested that the BEHAVIOR OF THE VAUDA‘NON CR“‘ERlA AT DlFFERENT DATA BIASES
CCC could be used as the preferred inap y approach, if the aim of QSAR developers is to have the smallest
differences, within a certaln range, among the experil data and the predictions of the external data set. I
In this new work [10], we have studied and compared the general trend§ of the various criteria in dependence of different possible bias in the - Location Shift - Scattering 0.04
external data distributions (scale, location, and location plus scale shifts), by means of a wide range of different simulated scenarios. This
study highlighted, also by visual inspections of the experimental vs. predicted plots, some problems related to a few criteria; in particular, .
average r2,, if based on the proposed cut-off, could be prone to accept also not predictive models. This analysis allowed also to propose = |: :
librated, and ints ble, new thresholds for each criteria in the definition of a QSAR model as extemally predictive. Two additional !
relevant topics emerged from the analysis of the results: 1) the scatter plot of the external predictions must always be evaluated and 2) the cCe
root mean squared error (RMSE) must also be calculated, as it is usually done in the good QSAR practice. In fact, we have verified that the o,
sensitivity of the various validation criteria to RMSE often differs. —— —
An additional imp topic, here idered and i only to CCC, was to check by hypothesis test if the value of the calculated CCC —G?
is statisti ignificant [11]. This procedure allowed, q to ine the ble size of the external data set, an =
important point in QSAR studies, where the data set sizes are often small e _Z“ ;
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e Some of the studied validation criteria tend to accept not predictive external data sets, in some of the applied biases: in particular the
© /° averaged 2, in the location and location plus scale shift scenario, and Q% , in the scale shift one for negative values of the shift.. In
Experimental Experimental Experimental addition, some of the studied criteria showed to be unbalanced with respect to the RMSE values: the averaged r2,, for the location
External validation data can be biased in different ways. The perfor of the validation criteria are here shift scenario and QZ, , for the location plus scale shift and, to a much higher level, for the scale shift scenario.
studied using the three biases studied by Lin [9]: location shift, scale shift and location plus scale shift.
NEW INTER-COMPARABLE THRESHOLDS
Due to the different behavior of the validation criteria with respect to the applied biases,
REQUESTED NUMBER OF EXTERNAL VALIDATION ELEMENTS especially the insensitiveness of some of them, new inter-comparable thresholds for the
acceptance of QSAR models, in a precautionary aproach, are here proposed and
Log BCF summarized as: 0 =070
Using the method proposed by Lin [11] it is possible to calculate the — '
d minimum number of external elements requested to perform an hypothesis 1, =065
s test (i.e. in rejecting the computed CCC if smaller or equal to the least CCC=0.85
acceptable one, which is calculated by the Lin’s method). (It is important to note that CCC is more or less comparable to the square root of the other
3 criteria: this is why its threshold is ively high)
£ We thus calculated the minimum ber of el ts requested in different
e’ simulated data sets. Here we present an example on a real dataset [12]. CONCLUSIONS
2 The minimum ber of el ts Ited to be from 52 to 66, with a v Q% ,and ged rZ,, in pting models as predictive, are not very itive for some of the biased simulated scenario.
1 confidence interval of 0.95. The number of elements in the studied dataset is v Only CCC and Q?; showed to be balanced respect to RMSE in all the simulated biased scenarios.
59, thus within the reported interval. v New int I hresholds are here proposed for QSAR model validation.
T E,p,,-,,,;,m t v/ CCC allows to ine the mini ble number of external elements for hypothesis test.
v For a better validation, a set of criteria and the scatter plots should be always verified [10] (as implemented in QSARINS [13])
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