HelmholtzZentrum münchen German Research Center for Environmental Health

Performance, Reliability and Robustness - A comparison of several experimental design strategies

Stefan Brandmaier¹, Igor V. Tetko^{1,2}

¹ Institute of Structural Biology, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany and ² eADMET GmbH, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany

Motivation

• REACH legislation: Each chemical compound produced in or imported into the EU in an amount of more than one ton has to be registered according to a number of endpoints • In case of hazardous, dangerous or toxic compounds, these endpoints contain toxicity and bio-accumulation Experimental determination of all these values is not possible, as experiments consume a lot of time, money (estimated to €9.5 billion)

Selection approaches

Space filling designs

- Usable only for few dimensions
- Chemical compounds are not

Dissimilarity selections

• Outlier detector in higher dimensional spaces

Similarity search

- Bias towards the central region
- Disregarding the periphery

Required specifications

Low prediction error

- Minimize average prediction error •
- Minimize the error of the worst sample
- Stability •
 - Low standard deviation in performance
 - Consistent development of performance
- Flexibility
 - Adaptability to small variations \bullet
- Robustness •
 - Against small modifications in the dataset •
 - Against structural outliers \bullet
- Reliability
 - Correlation between the number of selected \bullet compounds and the resulting performance

Chemical space representation

k-Medoid approach

- Non-adaptive
- Using principal components
- **Based on space filling idea**

PLS-Optimal

- Stepwise execution
- Using PLS latent variables
- **Based on dissimilarity**

DescRep

Sel

- Stepwise execution
- Using selected descriptors
- **Based on similarity**

Datasets

Boiling point

- 1198 compounds
- muted restrictions
- low complexity

LC₅₀

- 535 compounds
- no restrictions
- high complexity

logK_{oc}

- 648 compounds

- no restrictions
- average complexity

Validation

Bagging

Performance # R2 g2 RMSE MAE Training set: k-Medoid logKOC 648 records 0.81 0.81 0.55 0.42

Results

Referring to a binomial test, models resulting from a selection based on

- adaptive approaches
- clustering approaches

perform significantly better concerning

- RMSE
- \mathbf{Q}^2
- correlation coefficient

In terms of

- all tested endpoints
- both external and internal validation sets
- each examined size of the dataset (250-5000 compounds)

Conclusion

- k-Medoid provides the best performance for all examined datasets
 - DescRep is robust against structural outliers
- Adaptive approaches help to stabilize the performance and to increases the reliability
- The major influence regarding the quality of resulting models is the

