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Regulatory use of (Q)SAR before REACH

• Extensive use of grouping and read-across, generally without documented 

rationale

• Occasional use of QSARs in risk assessment, PBT assessment, and 

classification & labelling (mainly Existing Substances), generally without 

documented rationale

• Direct replacement of experimental data for physicochemical properties and 

environmental fate

• Filling of data gaps for ecotoxicological endpoints, usually to supplement 

experimental data

• Filing of data gaps for human health endpoints very limited, and only as 

supporting information
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Valid

QMRFQMRF
Robust summary of a (Q)SAR model, which reports key 

information on the model according to the

5 OECD validation principles.

Reliable

QPRFQPRF
Description and 

assessment of the 

prediction made by 

given model for a 

given chemical

Standardised (Q)SAR Reporting Formats

The need for “adequate and reliable” documentation is met by using 
standardised reporting formats:

Structures

Expt’l data

Methodology Model Prediction

Statistical 

validation
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A (Q)SAR should be associated with the following information:

1. a defined endpoint

2. an unambiguous algorithm

3. a defined applicability domain 

4. appropriate measures of goodness-of-fit, robustness and predictivity

5. a mechanistic interpretation, if possible

• Principles adopted by 37th Joint Meeting of Chemicals Committee and Working 
Party on Chemicals, Pesticides & Biotechnology; 17-19 Nov 2004

• ECB preliminary Guidance Document published in Nov 2005

• OECD Guidance Document published in Feb 2007

• OECD Guidance summarised in REACH guidance (IR and CSA) 2008

QMRF captures information on fulfilment of OECD validation principles, but no 
judgement or “validity statement” is included

(Q)SAR Reporting Formats: QMRF
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• QMRF No. 

• Free text 

• Endpoint

• Algorithm 

• Software

• Authors

• CAS No. 

• Formula 

• Chemical name 

• SMILES

JRC QSAR Model Database

Offline QMRF editor

http://qsardb.jrc.ec.europa.eu
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Published Reports by Endpoint (1 Sept 2011) 

1

14
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32

63
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physicochemical
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ecotoxicity

human health

total

1 September 2011: 63 QMRFs published

QMRFs in JRC database

http://qsardb.jrc.ec.europa.eu
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QPRF captures information on the substance and its prediction, and is intended 

to facilitate considerations of the adequacy of a prediction

1. Substance information

2. General (administrative) information on QPRF

3. Information on prediction (endpoint, algorithm, applicability domain, 
uncertainty, mechanism)

4. Adequacy (includes judgement and indicates whether additional information 
is needed for WoE assessment)

• Assessment  of adequacy depends on reliability and relevance of prediction, 
but also on the availability of other information, and the consequence of being 
wrong

• Not just a scientific consideration, but also a policy decision

(Q)SAR Reporting Formats: QPRF



9

http://ihcp.jrc.ec.europa.eu/our_labs/computational_toxicology/qsar_tools/QRF

Information on Reporting Formats

Offline QMRF 

editor 

available
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• Trend towards assessment based on Toxicity Pathways, Mode-of-Action (MoA) and 
Adverse Outcome Pathway (AOP)

• Development of OECD Harmonised Template (OHT) 201 

• OECD project, led by JRC

• Compatibility with IUCLID, OECD Toolbox, Effectopedia 
(http://www.effectopedia.org/go/) and other tools

Towards a template for Intermediate Effects

Exposure

Molecular 

Initiating 

Event 

Organelle 

Effects

Cellular 

Effects

Tissue 

Effects

Organ 

Response

Individual 

Response

Population 

Response

Toxicity Pathway

Mode of Action

Adverse outcome pathway
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1. Is the predicted endpoint clearly defined?

2. Is the predicted endpoint a direct information requirement?

3. Is the model training set fully available (for statistical models)?

4. Is the method used to develop the model well documented?

5. Is information available concerning the performance of the model?

6. In the case of a statistical model, is there evidence of overfitting?

7. Does the model training set contain the chemical of interest ?

8. Does the model make reliable predictions for analogues of the chemical of 
interest?

9. Is the prediction substantiated with argumentation based on the applicability 
domain of the model?

10. Can the prediction be easily reproduced?

10 questions for assessing model predictions

Worth et al (2011). A Framework for assessing in silico Toxicity Predictions: Case Studies with 

selected Pesticides. JRC report EUR 24705 EN. 
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Example: CAESAR mutagenicity predictions

Q1 Is the predicted endpoint clearly defined?

A1 Yes, the endpoint is Ames (S. Typhimurium) mutagenicity

Q2 If the predicted endpoint is clearly defined (“yes” to Q1), does it represent a direct information 

requirement under the legislation of interest, or is it related to one of the information requirements? 

A2 Yes, genotoxicity test data are required under most types of chemicals legislation (e.g. industrial 

chemicals, pesticides, biocides)  

Q3 If the model is statistically based (as opposed to knowledge-based), is the model training set fully 

available? 

A3 Yes, the training and test set are published (http://www.caesar-project.eu)

Q4 Is the method used to develop the model documented or referenced (e.g. in a scientific paper or QMRF)

A4 Yes, a QMRF is in preparation, based on the following publications:

Ferrari T, Gini G & Benfenati E (2009). Support vector machines in the prediction of mutagenicity of chemical 

compounds. Proc NAFIPS 2009, June 14-17, Cincinnati, USA, p 1-6.

Ferrari T & Gini G (2010). A new multistep model to predict mutagenicity from statistic analysis and relevant 

structural alerts. Central Chemistry 4, Suppl 1, S2.
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Example: CAESAR mutagenicity predictions

Q5 Is information available (in terms of statistical properties) concerning the performance of the model, 

including its goodness-of-fit, predictivity, robustness and error of prediction (uncertainty)?

A5 Yes. Information on the accuracy (82.1%), sensitivity (90.6%) and specificity (71.4%) are provided.

Q6 If the model is statistically based (as opposed to knowledge-based), does examination of the available 

statistics indicate that the model may have been overfitted?

A6 The model is statistically based but should not be overfitted because the ratio of chemicals (3380) to 

descriptors (42) is 80.5.

Q7 Does the model training set contain the chemical of interest?

A7 The model training set includes some pesticides including parathion-methyl but not sodium 

nitroguaiacolate.

Methyl parathion

Dimethoxy-(4-nitrophenoxy)-thioxo-phosphorane

CAS 298-00-0

S=P(Oc1ccc(cc1)[N+]([O-])=O)(OC)OC

Mutagen

Correctly predicted by CAESAR

Sodium Nitroguiacolate

2-methoxy-5-nitro-phenolate

CAS 67233-85-6

[Na+].[O-]c1cc(ccc1OC)[N+]([O-])=O

Non mutagen

Incorrectly predicted as mutagen by CAESAR
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Example: CAESAR mutagenicity predictions

Q8 Does the model make reliable predictions for analogues of the chemical structure of interest?

A8 Yes, the Caesar software gives the chance to examine, for each compound submitted, the six most 

similar compounds found in the model training set. For these compounds the experimental value for the 

selected endpoint is shown, together with the prediction made by the model. The similarity measure 

employed by the Caesar software takes into account functional group similarity, constitutional similarity, 

ring similarity and fingerprint similarity.

For parathion methyl (correctly predicted by the software), the similar structures obtained are: parathion methyl 

(input structure), aminofenitrothion, 1-ethenoxy-4-nitro-benzene, fenitrooxon, o-nitroanisole, N-hydroxy-N-(4-

nitrophenyl)acetamide. All of them are predicted correctly by the software. 

For nitroguaiacolate (wrongly predicted by the software) the similar structures obtained are: o-nitroanisole, 1-

ethoxy-3-nitro-benzene, 2,5-dinitrophenol, p-nitrosoanisole, 2-methoxy-1,3,5-trinitro-benzene, 1-ethenoxy-4-nitro-

benzene. All of them are predicted correctly by the software.
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Example: CAESAR mutagenicity predictions

Q9 Is the model prediction substantiated with argumentation based on the applicability domain of the 

model?

A9 Yes, Caesar addresses the applicability domain in several ways, namely by: 

a) checking whether the compound of interest falls in the descriptor space – if the compound 

is out of domain, this is noted in the output; 

b) providing a similarity score (1=identity) for the structure-based comparison with analogues;  

c) visual representation of the most similar compounds; 

d) by revealing the known and predicted toxicities for the analogues, thereby indicating the 

prediction error. 

Thus Caesar provides an assessment based on both the input (descriptor) space and the output 

(toxicological endpoint) space.

Q10 Can the model prediction be easily reproduced? 

A10 Yes, the software is accessible in the form of a freely accessible web platform (http://www.caesar-

project.eu)

The software is easy to use, even for non-specialists.
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Metabolism & 

fate prediction

Computational tools developed by the JRC

Toxicological data Grouping & read-acrossRanking

CRAFT

Toxtree

ESIS

(Q)SAR model 

database

DART Toxmatch

Ecotoxicity & toxicity 

prediction

METIS

http://ihcp.jrc.ec.europa.eu/our_labs/computational_toxicology/



17

Prediction

Compound structure

Compound properties

Reasoning

Toxicity Estimation Tool: Toxtree

• Downloadable versions from JRC and Sourceforge (http://toxtree.sourceforge.net)

• Online version: OpenTox - ToxPredict (http://www.opentox.org/)

• Version 2.5.0 (August 2011) includes Verhaar, Extended Verhaar (Enoch 2008), 
START biodegradation, ISSMIC organic functional groups
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CRAFT: Chemical Reactivity and Fate Tool

http://www.molecular-networks.com/products/craft

• Generates & visualises reactions, ranks 

transformation products 

• User can modify rulebase

• Developed by Molecular Networks (Germany) 

on behalf of JRC

• Data model based on AMBIT technology

• Compatible with METIS reaction editor

CRAFT Explorer

CRAFT Editor
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methanol

formaldehyde

formic acid

2-AB

CRAFT prediction of carbendazim biodegradation

• CRAFT biodegradation of carbendazim

• 7 reaction rules / structural alerts

• 14 products by 17 degradation steps

Mostrag-Szlichtyng & Worth (2010). In silico modelling of microbial and human metabolism: a case 

study with the fungicide carbendazim. JRC report EUR 24523 EN. 
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METIS: Metabolic Information Input System

Reaction editor for storage, manipulation, 

and exchange of information on metabolic 

and degradation reactions 

• Developed by Molecular Networks 

(Germany) on behalf of JRC

• Import / export reactions from / to

CRAFT & other applications
http://www.molecular-networks.com/products/metis
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• In principle, (Q)SAR estimates can be used as direct replacements for test 

data, but in practice, use in weight-of-evidence assessments is more likely

• No reporting format for Integrated Testing Strategy, but tempate for 

intermediate effects under development

• To harmonise the use of QSARs, standardised templates for reporting the 

validity of QSAR models, and the adequacy of QSAR estimates, are provided 

in the REACH guidance documentation

• No formal validation and adoption procedures for (Q)SAR models

• Criteria for assessing the adequacy of (Q)SAR predictions?

• Examples needed to illustrate how to demonstrate adequacy

Summary & conclusions
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• OECD Guidance on QSAR validation (2007)

http://www.oecd.org

• REACH Guidance on ITS and use of QSARs (2008)

http://guidance.echa.europa.eu/docs/guidance_document/information_requirements_en.htm

• QSAR reporting formats (QMRF and QPRF) and QMRF Editor

http://ihcp.jrc.ec.europa.eu/our_labs/computational_toxicology/qsar_tools/QRF

• QSAR Model Database

http://qsardb.jrc.ec.europa.eu/qmrf/

• Mostrag-Szlichtyng A & Worth AP (2010). In silico modelling of microbial and human 
metabolism: a case study with the fungicide carbendazim. JRC report EUR 24523 EN.  

• Worth A, Lapenna S, Lo Piparo E, Mostrag-Szlichtyng A & Serafimova R (2011). A 
Framework for assessing in silico Toxicity Predictions: Case Studies with selected 
Pesticides. JRC report EUR 24705 EN.

Key references
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Appendix

An example of a QMRF
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1. QSAR identifier

1.1. QSAR identifier (title): Artificial neural network for acute fish toxicity (fathead minnow)
1.2. Other related models: No other related models.
1.3. Software coding the model: None

2. General information

2.1. Date of QMRF: 18/09/2009.

2.2. QMRF author(s) and contact details:

Aleksandra Mostrag-Szlichtyng; EC Joint Research Centre, Institute for Health and Consumer 

Protection, Via E. Fermi 2749, 21027 Ispra (VA), Italy; 

aleksandra.mostrag-szlichtyng@ec.europa.eu 

2.3. Date of QMRF update(s): No QMRF update(s).

2.4. QMRF update(s): No QMRF update(s).

2.5. Model developer(s) and contact details:

JRC Computational Toxicology Group

2.6. Date of model development and/or publication: 21/08/2009 (model development).

2.7. Reference(s) to main scientific papers and/or software package:

Software package: ADMET Predictor™ 3.0; Simulations Plus, Inc.  42505 10th Street West Lancaster, 

CA 93534-7059 USA; http://www.simulations-plus.com/Products.aspx?grpID=1&cID=11&pID=13;

2.8. Availability of information about the model: All information is available.

2.9. Availability of another QMRF for exactly the same model: No other QMRF available for the same model.



25

3.1. Species:
Fathead Minnow (Pimephales promelas)

3.2. Endpoint:
3. Ecotoxic effects; 3.3. Acute toxicity to fish (lethality)

3.3. Comment on endpoint:
Experimental data on 96-h LC50 (mmol/L) in fathead minnow for 577 studied chemicals were obtained 
from the Distributed Structure Searchable Toxicity (DSSTox) US-EPA Fathead Minnow Acute Toxicity 
(EPAFHM) Database. The subject of the experiments were juvenile fathead minnows (28 to 36 days-
old) exposed into test substances via ninety-six-hour flow-through system (2). 

3.4. Endpoint units:
Molar 96-hours lethal concentration (LC50) in fathead minnow was expressed in (mmol/L) and 
inversed into decimal logarithmic scale: Log (96-h LC50) (mmol/L).

3.5. Dependent variable:
Log (96-h LC50) (mmol/L).

3.6. Experimental protocol:
The experimental protocols of biological/chemical investigations were described by Brooke et al. (3) and 
Geiger et al. (4). Organometallics, inorganic substances and chemicals for which the data were 
unavailable were excluded.

3.7. Endpoint data quality and variability:
The quality of data from DSSTox/EPAFAHM Database was verified by Russom et al. (2).

3. Defining the endpoint – OECD Principle 1
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4.1. Type of model:

Artificial Neural Network model

4.2. Explicit algorithm:

Log (96-h LC50) model;

MLP-ANNE - Multilayer Perceptron Artificial Neural Network Ensembles Regression Model;

MLP-ANNE model was calculated with ADMET PredictorTM 3.0 software. After the procedures of (i) selecting model 

descriptors (i. e. removing invariant or highly correlated ones and performing sensitivity analysis to find the most relevant 

combination of them); (ii) splitting the input data into training pool (303 training set compounds + 173 verification test 

compounds) and test set (101 compounds) using Kohonen self-organising map (SOM) method; and (iii) training MLP-

ANNE for different network architectures, the final model could be selected. It was characterized by the following 

architecture: 11-3-1 (i. e. 11 inputs [selected molecular descriptors], 3 neurons and 1 output [Log (96-h LC50), mmol/L]).

4.3. Descriptors in the model:

[1] S+logP; octanol-water partition coefficient

[2] SdCH2; atom-type electropological-state index for =CH2 groups

[3] Pi_Q4; derived from electronic properties, 4th component of the autocorrelation vector of Hückel pi atomic charges

[4] F_TpleB; constitutional descriptor, triple bonds as fraction of total bonds

[5] PolarizG ; [Ǻ3]; derived from electronic properties, polarizability calculated by Glen's method

[6] EEM_XFpl; derived from electronic properties, maximum sigma Fukui index on polar atoms

[7] N_Bonds; constitutional descriptor, number of bonds

[8] SsO-; atom-type electropological-state index for coordinated O- groups

[9] SHdsCH; atom-type electropological-state index for aCHa groups (aromatic carbons)

[10] StsC; atom-type electropological-state index for #C- groups

[11] Sscl; atom-type electropological-state index for -Cl groups

3 4. Defining the algorithm – OECD Principle 2
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4.4. Descriptor selection:

ADMET PredictorTM 3.0 software calculated hundreds of descriptors for each studied compound. Thus, 

the pre-selection of "candidate" inputs had to be performed. This procedure aimed to exclude (based on 

the statistical selection rules) from the initial set of available inputs those which were: (i) identical or of 

low variance (i. e. coefficient of variation, CV, lower than 1%); (ii) underrepresented (i. e. had non-zero 

values for less than 4 compounds); (iii) highly correlated (i. e. the correlation between raw descriptors 

was greater than 0.99999). Removing the latter resulted in the selection of 149 "candidate" inputs. In the 

next step, in order to find the optimal model complexity, the input gradient sensitivity analysis (SA) over 

all "candidates" was performed. Finally, the set of 11 descriptors was selected. 

4.5. Algorithm and descriptor generation:

All the descriptors were calculated with ADMET PredictorTM 3.0 software.

4.6. Software name and version for descriptor generation:

ADMET Predictor™ 3.0;

http://www.simulations-plus.com/Products.aspx?grpID=1&cID=11&pID=13;

Software for estimating certain ADMET (Absorption, Distribution, Metabolism, Elimination, and 

Toxicity) properties of a drug-like chemical from its molecular structure; 1998-2008; Simulations Plus 

Inc;

Simulations Plus, Inc.  42505 10th Street West Lancaster, CA 93534-7059 USA, Phone: +1.661.723.7723 

(international), Toll free: 888.266.9294 (in the U.S. & Canada), Fax: +1.661.723.5524.

4.7. Descriptors/Chemicals ratio:  11/476 = 0.023 (43 chemicals / descriptor)

4. Defining the algorithm – OECD Principle 2
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5.1. Description of the applicability domain of the model:

Applicability domain based on the training pool, including 476 defined organic chemicals: 471 single compounds and 5 

mixtures of formulation (for details please refer to the supporting files): 

(i) AD by chemical classes: the training pool compounds covered all standard chemical classes from EPAFHM Database 

(e.g. aliphatic and aromatic hydrocarbons, ethers, alcohols, aldehydes, ketones, amides, aliphatic and aromatic amines, 

sulfides, pyridines, barbitals); these compounds covered different modes of toxic action - the majority of them (200) was 

associated with baseline narcosis or electrophile/proelectrophile reactivity (82).

(ii) AD by descriptor value ranges: the model predictions were suitable for compounds characterized by the following 

descriptor values: 

[1] S+logP: min. -4.31; max. 6.77; 

[2] SdCH2: min. 0.00; max. 5.42; 

[3] Pi_Q4: min. -0.17; max. 0.45; 

[4] F_TpleB: min. 0.00; max. 0.50; 

[5] PolarizG: min. 3.47; max. 48.81; 

[6] EEM_XFpl: min. -0.08; max. 0.45; 

[7] N_Bonds: min. 1; max. 35; 

[8] SsO-: min. 0.00; max. 30.90; 

[9] SHdsCH: min. 0.00; max. 5.42; 

[10] StsC: min. 0.00; max. 7.42; 

[11] SsCl: min. 0.00; max. 35.69.

Experimental (observed) Log (96-h LC50) values for the training pool compounds varied from min. -6.38 to max. 2.96 

mmol/L; for test set compounds from min. -3.25 to max. 2.85 mmol/L. 

5. Defining the applicability domain – OECD Principle 3
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5.2. Method used to assess the applicability domain:

Applicability Domain (AD) assessment based on the training pool compounds: (i) their chemical identity (i.e. the presence 

of certain functional groups and their membership in particular chemical classes, e.g. organometalics and inorganic 

substances were excluded); (ii) the ranges of descriptor values describing the intrinsic properties of studied chemicals - the 

descriptor values of "predicted" compounds should fall between maximal and minimal descriptor values of the training 

pool compounds.

5.3. Software name and version for applicability domain assessment:

ADMET Predictor™ 3.0;

http://www.simulations-plus.com/Products.aspx?grpID=1&cID=11&pID=13;

Software for estimating certain ADMET (Absorption, Distribution, Metabolism, Elimination, and Toxicity) properties of 

a drug-like chemical from its molecular structure; 1998-2008; Simulations Plus Inc;

Simulations Plus, Inc.  42505 10th Street West Lancaster, CA 93534-7059 USA, Phone: +1.661.723.7723 (international), 

Toll free: 888.266.9294 (in the U.S. & Canada), Fax: +1.661.723.5524.

5.4. Limits of applicability:

The model is suitable for specified chemical classes of compounds that have particular molecular descriptors in specified 

ranges (p. 5.1). The most sensitive descriptor was octanol-water partition coefficient (S+logP). The values of S+logP for 

training pool compounds varied from -4.31 to 6.77 as the applicability domain of the model covers chemicals 

characterized by different modes of toxic action. Compounds characterized by S+logP values lower than 0 as well as 

those with S+logP higher than 6 should not be modelled as narcotics – S+logP<0 indicates unrealistically high toxic 

effects, while S+logP>6 indicates that the uptake of compound from water is too slow to be connected with acute toxicity. 

The predictions performed by narcosis-type model can be associated with high uncertainty for such compounds.

5. Defining the applicability domain – OECD Principle 3
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6.1. Availability of the training set: Yes
6.2. Available information for the training set:

CAS RN: Yes; Chemical Name: Yes; Smiles: Yes; Formula: Yes; INChI: Yes; MOL file: Yes.
6.3. Data for each descriptor variable for the training set: All.
6.4. Data for the dependent variable for the training set: All.
6.5. Other information about the training set:

The MLP-ANNE model was developed and internally validated based on the “training pool” including 476 compounds 
(303 “training set” compounds for neural networks training + 173 "verification set" compounds for internal 
validation). The algorithm used for training pool selection based on Kohonen self-organizing map (SOM) method.

6.6. Pre-processing of data before modelling:
Transformation of data from 96-h LC50 to logarithmic scale: Log (96-h LC50).

6.7. Statistics for goodness-of-fit:
The MLP-ANNE model's goodness-of-fit was tested according to 303 training set compounds: 

Coefficient of Multiple Determination: R2 = 0.755
Root Mean Squared Error of Calibration: RMSE = 0.699
Mean Absolute Error: MAE = 0.508

6.8. Robustness – Statistics obtained by leave-one-out cross validation:
The MLP-ANNE model was internally validated according to 173 verification set compounds. In order to find the best 
complexity of the model (i. e. determine the moment of stopping the training procedure and avoid overtraining) the 
verification set errors were monitored (early stopping technique). The finally chosen model was characterized by the 

following, verification-set based, statistics: 
Explained variance in prediction: Q2 = 0.809

6.9. Robustness – Statistics obtained by leave-many-out cross validation: No other information available.

6.10. Robustness – Statistics obtained by Y-scrambling: No other information available.
6.11. Robustness – Statistics obtained by bootstrap: No other information available.
6.12. Robustness – Statistics obtained by other methods: No other information available.

6. Internal validation – OECD Principle 4



31

7.1. Availability of the external validation set: Yes

7.2. Available information for the external validation set:

CAS RN: Yes; Chemical Name: Yes; Smiles: Yes; Formula: Yes; INChI: Yes; MOL file: Yes.

7.3. Data for each descriptor variable for the external validation set: All.

7.4. Data for the dependent variable for the external validation set: All.

7.5. Other information about the external validation set: External validation set with 101 compounds appended.

7.6. Experimental design of test set:

The external validation set (i. e. test set) consisted of 101 compounds from the entire data set, selected 

according to Kohonen Self-Organizing Map (SOM) mathematical method. The composition of test set 

was determined before the beginning of neural networks training procedure. The mapping process based 

on 11 previously selected descriptors, gathering the structural information on the studied compounds. 

The size of Kohonen map was 24x24 and all chemicals were clustered into 576 2-dimensional cells of 

similar structure, indicated by the values of the descriptors.

7.7. Predictivity – Statistics obtained by external validation:

External validation coefficient (based on test set compounds): QEXT
2 = 0.715

Root Mean Squared Error of Prediction (based on test set compounds): RMSE = 0.705

Mean Average Error (based on test set compounds): MAE = 0.515

7.8. Predictivity – Assessment of the external validation set:

The application of Kohonen SOM method allowed for determining the external validation (test) set, 

consisting of compounds representing the structural features and toxicological classes of the entire data 

set.

7.9. Comments on the external validation of the model: No other information available.

7. External validation – OECD Principle 4
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Validation of model – OECD Principles 4 & 5

External validation 

QEXT
2 = 0.715

RMSE = 0.705

MAE = 0.515

Internal validation 

R2 = 0.755 

RMSE = 0.699

MAE = 0.508
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8.1. Mechanistic basis of the model:

As the MLP-ANNE model was developed statistically, no a priori assumptions have been made.

8.2. A priori or a posteriori mechanistic interpretation:

A posteriori mechanistic interpretation;

The sensitivity analysis allowed to select molecular descriptors giving as much relevant information on 

the endpoint as possible. The most sensitive one was octanol-water partition coefficient (S+logP), which 

is the main mechanistically “interpretable” descriptor as far as acute aquatic toxicity is concerned.

S+logP describes the kinetics of the process of uptaking chemicals from water via lipid membranes and 

thus indicates a baseline toxicity.

Other descriptors represent the structural features of chemicals as well as their electronic properties 

(e.g. polarizability, presence of polar/certain functional groups or bonds) – they reflect the polarity and 

the surface areas of compounds that are available for solvent (water) molecules as well as for lipid 

membranes of aquatic biota.

8.3. Other information about the mechanistic interpretation: No other information available.

8. Mechanistic interpretation – OECD Principle 5
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9.1. Comments:

The presented MLP-ANNE model is an example of the result of non-linear modelling based on the 

application of sophisticated mathematical and statistical approaches. As far as no equation describing 

the correlations between descriptors and the endpoint can be specified, the only way to transparently 

present the modelling procedure and its results is to describe it step-by-step in words – for this reason 

the model is transparent but not readily reproducible.
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9.3. Supporting information:

Supporting Information on training and test sets appended.

9. Miscellaneous information


