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Introductory notes on QSAR and modern data streams:
WChemical Structure — in vitro — in vivo data continuum

! Novel workflows for hybrid and integrative QFAR

Modeling (with examples of applications):

-Hierarchical modeling based on in vitro — in vivo
Correlations

- Hybrid chemical-biological descriptors

- Consensus between chemical and biological neighbors

Conclusions and outlook: QSAR modeling
workflows and the use of QSAR for decision
support




QSAR modeling progression

» Experimental Data
— Structure
— Activity
 Validated models of data
— Descriptors
— Statistical/machine learning techniques

« Data inputation and experimental
confirmation

= gain




Current Problems and Challenges
in QSAR modeling

 (partially) solved problems:
— Descriptors
— Modeling techniques (statistical/machine learning)
— Model validation approaches

— Virtual screening and experimental validation of
predictions (low bar)

« Challenges
— Chemical and biological data curation and correction

— New workflows integrating QSAR with available
experimental data

— Utility of QSAR models outside of research labs
(especially, regulatory acceptance)

— New application areas (e.g., materials informatics;
nanotoxicology; integration with PK/PD modeling)




QSAR and Chemical Toxicity
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Toxicity Testing in the 21st Century:
A Vision and a Strategy

Advances in molecular biology, biotechnology, and other fields are pav-

ing the way for major improvements in how scientists evaluate the health risks
posed by potentially toxic chemicals found at low levels in the environment. These
advances would make toxicity testing quicker, less expensive, and more directly
relevant to human exposures. They could also reduce the need for animal testing by
substituting more laboratory tests based on human cells. This National Research
Council report creates a far-reaching vision for the future of toxicity testing.

oxicity tests on laboratory
animals are conducted to

evaluate chemicals—including

medicines, food additives. and industrial,

consumer, and agricultural chemicals—for

their potential fo cause cancer, birth
defects, and other adverse health effects.
Information from toxicity testing serves
as an important part of the basis for
public health and regulatory decisions
concerning toxic chemicals. Current test
methods were developed
incrementally over the
past 50 to 60 vears and
are conducted using
laboratory animals, such
as rats and mice. Using
the results of animal
tests to predict human
health effects involves a
number of assumptions
and extrapolations that
remain controversial.
Test animals are often
exposed to higher doses
than would be expected
for typical human
eXposures, Tequiring
assumptions about

effects at lower doses or exposures. Test
animals are typically observed for overt
signs of adverse health effects, which
provide little information about biological
changes leading to such health effects.
Often controversial uncertainty factors
must be applied to account for differences
between test animals and humans. Finally,
use of animals in testing is expensive and
time consuming. and it sometimes raises
ethical issues

Today, toxicological
evaluation of chemicals
1s poised to take advan-
tage of the on-going
revolution m biology
and biotechnology. This
revolution is making it
increasingly possible
to study the effects of
chemicals using cells,
cellular components. and
tissues—preferably of
human origin—rather
than whole animals.
These powerful new
approaches should help
to address 2 number of
challenges facing the
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Transforming Environmental

Health Protection

Francis S. Collins,™ George M. Gray?" John R Bucher™

Agency (EPA), with support from the US

National Toxicology Program (NTF),
funded a project at the National Research
Council (NRC) to develop a long-range vision
for toxicity testing and a strategic plan for
implementing that vision. Both agencies
wanted future toxicity testing and assessment
paradigms to meet evolving regulatory needs.
Challenges include the large numbers of sub-
stances that need to be tested and how to incor-
porate recent advances in molecular toxicol-
ogy, computational sciences, and information
technology: to rely increasingly on human as
opposed to animal data; and to offer increased
efficiency in design and costs (/-5). In
response, the NRC Committee on Toxicity
Testing and Assessment of Environmental
Agents produced two reports that reviewed
current toxicity testing, identified key issues,
and developed a vision and implementation
strategy to create a major shift in the assess-
ment of chemical hazard and risk (6, 7).
Although the NRC reports have laid outa solid
theoretical rationale, comprehensive and rig-
orously gathered data (and comparisons with
historical animal data) will determine whether
the hypothesized improvements will be real-
ized in practice. For this purpose, NTF, EPA,
and the National Institutes of Health Chemical
Genomics Center (NCGC) (organizations
with expertise in experimental toxicology,
computational toxicology, and high-through-
put technologies, respectively) have estab-
lished a collaborative research program.

]:n 20035, the LS. Environmental Protection

EPA, NCGC, and NTP Joint Activities

In 2004, the NTP released its vision and
roadmap for the 21st century ([), which
established initiatives to integrate high-

*Diractar, National Human Gename Research hstitut
{NHGRI}, National Institutes of Health, Bethesda, MD
20892; *Assistant Administrator for the «

throughput screening (HT'S) and other auto-
mated screening assays into its testing
program. In 2005, the EPA established the
National Center for Computational Toxi-
cology (NCCT). Through these initiatives
NTP and EPA, with the NCGC, are promot-
ing the evolution of toxicology from a pre-
dominantly observational science at the
level of disease-specific models in vivo to a
predominantly predictive science focused
on broad inclusion of target-specific, mech-
anism-based, biological observations in
vitro (1, ) (see figure, below).

Toxicity pathways. In vitro and in vivo
tools are being used to identify cellular
responses after chemical exposure expected
to result in adverse health effects (7). HTS
methods are a primary means of discovery
for drug development, and screening of
=100,000 compounds per day is routine ().
However, drug-discovery HTS methods tra-
ditionally test compounds at one concentra-

Standard rodent
Human experience | oo ogical tests

1-3 studiesiyear

We propose a shift fram primarily invivo animal
studies to in vitro assays, in vivo assays with
lower organisms, and computational modeling
for toxicity assessments.

tion, usually between 2 and 10 uM, and toler-
ate high false-negative rates. In contrast, in
the EPA, NCGC, and NTP combined effort,
all compounds are tested at as many as
concentrations, generally ranging from
nM to ~100 uM, to generate a concentration-
response curve { 9). This approach is highly
reproducible, produces significantly lower
false-positive and false-negative rates than
the raditional HTS methods (9), and facili-
tates multiassay comparisons. Finally, an
informatics platform has been built to com-
pare results among HTS screens; this is
being expanded to allow comparisons with
historical toxicologic NTP and EPA data
(http:/ncge nih.gov/pubfopenhts). HTS data
collected by EPA and NTPF, as well as by
the NCGC and other Molecular Libraries
Initiative centers (http://mli.nih.gov/), are
being made publicly available through Web-
based databases [e.g., PubChem (http://
pubchem.nchbi.nlm.nih. gov)]. In addition,

Biochemical- and cell-based
in vitro assays

=10,000/day

EPAs Contribution: The ToxCast Research Program

906

palicies of their raspadive agenci

huthar for carrespandence. E-mail: francisc @mail nih.gov
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icology approaches can yield data predictive of results from animal toxicity studies, will allow prioritization
of chemicals for further testing, and can assist in prediction of risk to humans.

SCIEMNCE www.sdencemag.org

ed from www.sciencemag.org on February 15, 2008
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Data Continuum/Modeling workflow™= '

L
» UNC.EDU

PubClhem

Szuaon

23 e

OO00EE EEED( ]II[‘J‘IDI
o 2w

TooceooneR

Structural data

Data collection and curation ‘ -

Biological
In vivo toxicity descriptors descriptors
models

~ e, A

AR

AN,
AR W

e ) Combi-QSAR

- modeling
ChemBench portal




The importance of DATA to enable

any informatics-dependent discipline:
bioinformatics example

Go .-glc labs Books Ngram Viewer

Graph these case-sensitive comma-separated phrases: sequence data,bicinformatics
between 1950 and 2008 from the corpus English ¥ with smoothingof 3~ _
| Search lots of books |

Sequence data” vs. “bioinformatics

Search in Google Books:




The importance of DATA to enable

any informatics-dependent discipline:
cheminformatics example

Go .-glc labs Books Ngram Viewer

Graph these case-sensitive comma-separated phrases: cheminformatics,chemoinformatics,chemical databases
between 1950 and 2008 fromthe corpus English * with smoothingof 3 ¥
Search lots of books

I n 1 l dat R

“Chemical databases” vs “chemoinformatics” or
“‘cheminformatics

Search in Google Books:

Done & @ Internet | Protected Mode:



Data dependency and data quality =%
are critical issues in QSAR modeling —— XiGak

® Cheminformaticians are at the mercy of data providers. Prediction
performance of (Q)SAR models could depend strongly on the
quality of input data (both structures and activities).

e Both chemical and biological data in a dataset may be inaccurate
and in need of thorough curation

e The number of published QSAR models that were poor or not too
successful due to data quality issue is unknown but possibly large

e Often considered trivial, the basic steps to curate a dataset of
compounds are not so obvious especially for beginners.




242 chemlcal records + 1 bmary act|V|ty

Looks clean




Looks clean ... but ...

CalCUlatiOn Of Dra On mO/eCUIar descri tOrS . .1GI.22-I3 - error ; Hydrogens are probably lacking!

Mol.231 - error : Hydrogens are probably lacking!
Mol 232 - error : More than one structure!

: . : Mol 233 - error : Hydrogens are probably lacking!
Select molecule files: Lf_m.k sl s Mol.234 - error : Hydrogens are probably lacking!
‘j:'\.Dbernai_DataCuratinn.sdf ::“fﬂ L . Molecule identifier : Mol.235 - error : Hydrogens are probably lacking!
(23 box0_big ’ Mol.236 - error : Hydrogens are probably lacking!
,_:_3 box3_big = Mol 237 - error : Hydrogens are probably lacking!
|__j DATA Ligand 12 Lines 28 - error : Hydrogens are probably lacking!
Mol.239 - error : Hydrogens are probably lacking!
. 28 Mol.240 - error : Hydrogens are probably lacking!
':-_3 OBERNAL 2010 o : Mol 241 - error : Hydrogens are probably lacking!
(] TEMP (¢ Name within molecule file Mol 242 - error : Hydrogens are probably lacking?

'--3 i Waolecule name field : E .
[z TRIAL 1 <’—> Total processed molecules: 242 MDL multiple SD file (*.sdf)

Total rejected molecules: 242 (look at Draghist.leg)

Select files

E3 mvo " Chemical formula

End of descriptor calculation. Tetal calculation time: 0 minutes

Files of type:
|r.1[:-|_ multiple SD file (*.sdf)

|~ H-depleted molecules
: Mumber of processed molecules: 242

[ User defined bond orders v History on-line i Total number of rejected molecules: 242

Mo molecules are available for further processingl

All compounds are in fact incorrect

(presence of inorganics, salts, organometallics,
duplicates; certain hydrogens are lacking, wrong
standardization; etc.)

http.//chembench.mml.unc.edu




QSAR modeling with non-curated datasets

Presence of ERRONEOUS AND/OR
WRONG STRUCTURES

Presence of MISPRINTS
AND WRONG NAMEZS

ERRORS in the calculation
of DESCRIPTORS

QSAR MODELS 2?7 ¢

Presence of DUPLICATES

'/ Presence of MIXTURES

Presence of SALTS
Etc.




Removal of mixtures, inorganics
(and eventually organometallics)

Structural conversion
Cleaning/removal of salts

Normalization of
specific chemotypes

Treatment of difficult cases

Fourches,
Muratov,
Tropsha.
Trust but

verify. JCIM,

CURATED DATASET (2D representation) 2010, 29, 42 28_




Procedures

Software

Availability

Inorganics
Removal

Structure
Normalization
(fragment removal,
structural curation,
salt neutralization)

Duplicate
Removal

SDF
management/
viewer
File format
converter

ChemAxon/JChem
OpenEye/Filter

ChemAxon/Standardizer
OpenBabel
Molecular Networks/
CHECK, TAUTOMER

ISIDA/Duplicates
HiT QSAR
CCG/MOE

ISIDA/EdiSDF
Hyleos/ChemFileBrowser
OpenBabel
ChemAxon/MarwinView
CambridgeSoft/ChemOffice
Schrodinger/Canvas
ACD/ChemFolder
Symyx Cheminformatics
CCG/MOE
Accelrys/Accord
Tripos/Benchware Pantheon

Free for Academia
Free for Academia

Free for Academia
Free
Commercial

Free for Academia
Free for Academia
Commercial

Free

Free

Free

Free for Academia

Commercial
Commercial
Commercial
Commercial
Commercial
Commercial
Commercial

Summary of major
procedures and
corresponding
relevant software
for every step of
the data curation
process




The effect of curation on dataset
size.

Dataset

Number of compounds

Original set Curated set

Liver toxicants (DILI)

1061

951 (90%)

Nitroaromatics (rats)

28

28 (100%)

Nitroaromatics (7. pyriformis)

95

95 (100%)

ToxRefDB

292 (91%)

Ames mutagenicity

6542 (92%)

Bioavailability (UCSD)

734 (91%)




Statistical parameters of QSAR models before
and after curation.

ID Name ]12 (—22 RZEF Sws Sn- SEF
Rat 0.96 0.84-0.93 | 0.89-0.92 | 0.11-0.13 | 0.16-0.24 | 0.20-0.26
Ratang 0.91-0.97 | 0.89-0.95 | 0.45-0.88 | 0.10-0.18 | 0.14-0.28 | 0.28-0.58

TP 0.83 — 0.76 0.33 — 0.38

TP 0.85 — 0.54 0.31 — 0.54
Biowisdom
non-curated

No modeling was possible

Modeling Set 5-fold external CV Accuracy = 62-68%
External sets Accuracy = 56-73%

59 Ames Sensitivityrr=83%); Sensitivitysy=87%: Specificityrr=Specificitysyn—=75%

Biowisdom

non-curated AUC=88%; AUCsi1=89%: AUCR=83%

5 Ames Sensitivityrr=Sensitivitysyn=79%: Specificityrs=Specificitysn=81%

*
8 curated

AUCp=86%:; AUCgy,=84%; AUCgs=83%

Where:

TP — Tetrahymena pyriformis dataset, (M)~ modeling with various representations of nitro groups
R2 - determination coefficient, Q2 - cross validation determination coefficient

R2.- determination coefficient for external folds extracted from the modeling set

S, - standard error of a prediction for work set

S., - standard error of prediction for work set in cross validation terms

S, - standard error of a prediction for external folds extracted from the modeling set

A - number of PLS latent variables, D - number of descriptors, M - number of molecules in the work set
R2gys - determination coefficient for external validation set

R2evsv) - determination coefficient for external validation set with shuffled nitro groups

AUC — Area Under Curve statistical parameter

RF — Random Forest, SVM — Supporting Vector Machine, GP — Gaussian Processes, * Prediction performances are reported for external validation set.




1

QSAR modeling of nitro-aromatic Oy #

toxicants © © ©
-Case Study 1: 28 compounds tested in rats,

log(LD50), mmol/kg.

-Case Study 2: 95 compounds tested against

Tetrahymena pyriformis, log(IGC50), mmol/ml.

Data curation improves the true accuracy

(up or down!) of QSAR models

significantly modified the overall prediction accuracy obtained by models trained with
standardized (R?,,,~0.5) vs. non-standardized (R?_,,<0) compounds.

Results show that even small differences in structure representation
can lead to significant errors, and even robust and inherently predictive
models can fail on non-curated external validation sets.

Artemenko, Muratov et al. J. SAR QSAR 2011, Accepted.




Case Study |I:
A Two-step Hierarchical QSAR

Modeling Workflow for Predicting
in vivo Chemical Toxicity”

*7Zhu, Richard, Rusyn, Wright, et al, EHP, 2009, 117(8):1257-64




T

Focusing on a small subsetog\ly 8

# UNC.EDU

ToxCast™ data: Chronic Mous#&
Toxicity

Continuity (overlaps with previous ToxRefDB data)
Manageable (has only 7 in-vivo assays)

3 assays with the highest fraction of actives chosen

for initial studies

CHR_Mouse_LiverProliferativeLesions (87 actives)
CHR_Mouse_LiverTumors (68 actives)
CHR_Mouse_Tumorigen (88 actives)

1 composite endpoint:
CHR_Mouse_Liver tox (110 actives)




Data partitioning based on in vitro-in Vivo-N MML
correlations as part of the QSAR Modeling A=t

W)cr) Ebcfjac})@l\-lvitfg_‘\}fls‘} OIn-vivo profile (3 x 353 = 1059 combinations):

T
Toxic
(in-
vivo)/inacti
\_Vvein vitro /

In-vitro

o

In-vitro

 Binary classification QSAR for “baseline” (Il & Ill) vs.
off-line (I & IV) using chemical descriptors only




Modeling Workflow for ~1400 in vitro — in vivo S8
i MM

Using Various QSAR Approaches and Dragon desSiitiac

ToxRefDB

" In-vivo \ " In-vitro "\
e J In-vitro<->In-vivo
g

profiles

Prediction New chemical
results library 5-fold cross validation

OO0

Multiple single-profile models




External prediction workflow

o
O

Validated RF ' ici
e Toxic or Non-toxic in
QSAR classifiers Prediction .
(based on .

selected assays) °
2

' ; Consensus

Prediction

1

Individual Prediction
- for in vivo endpoint

Tox

0 1 In vitro

Class 1 or 2

In vitro Assay
Database




m Conventional OSA&R

H Single Assay Average

Consensus Model

Liver Proliferative  Liver Tumors Tumorigens Compaosite_liver
Lesions Toxicity




Case Study 2. Hybrid chemical-biological
(short-term assays) descriptors*

Zhu et al, EHP, 2008, (116): 506-513
Sedykh A, Zhu H, Tang H, Zhang L, Richard A, Rusyn |, Tropsha A. Use of in vitro HTS-derived

concentration-response data as biological descriptors improves the accuracy of QSAR models of in vivo toxicity.
EHP, 2011, 119(3):364-70.




QFAR modeling using hybrid chemical-biological descriptors

Combined chemical/
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arom.
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Acrolein 56.0
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nitrophenol
OH
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Case Study: prediction of in vivo toxicity (rat LD.,)

*1408 substances
*382 chemical structure descriptors (Dragon v5.5)
* 13 in vitro NCGC cell viability assays * :

gHTS (quantitative HTS) data

14 test concentrations: 0.6nm .. 92.2um

May vield up to 13x14 = 182 in vitro gHTS descriptors, but

the issue of data noise becomes important.
*Inglese J., Douglas S. A. et al. PNAS, 2006, v103(31), p11473



CAS#79-43-6

~

CAS#141-44-4

CAS#92-52-4 _
cl o o >

CAS#116-06-3 Both toxic

0]
N
L \NH)JQLO/ S /

*

= (=] =]

Space of chemical descriptors

Structurally different
chemicals can be close
in biological space.

Similar chemicals
can be distant in

biological space.

CAS#101-96-2 Toxic

f e

5 4 5 6 7
Space of gHTS descriptors

CAS#793-24-8 NH
MNHQ @

Non-toxic

Pairwise distances of modeling compounds in space of chemical (y-axis) and biological (x-axis) descriptors:
® Between “toxic” compounds® Between “non-toxic” compounds{® Between “toxic” and “non-toxic” compounds



EXAMPLES OF QHTS CONCENTRATION-
RESPONSE CURVES AND THEIR NOISE-
FILTERING TRANSFORMATIONS

>

N
o
1

Cell viability (%)
B A §
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-100

20 5

o
i

THR (15%) B -

|= - B-Nitrostyrene \
) A
| —e— Carbendazim / .
Colchicine :'I Jl""_l_ G, g —
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Rat LD, data: “TOXIC:” 92 molecules

gHTS LD,

7385 molecules overlap: | / s
X 695 | “MARGINAL:” 326 molecules DRERE:

NTP-gqHTS data: | || molecules P ——— 369

1408 molecules | “NON-TOXIC:” 277 molecules TClOENEE

B 5-fold cross-validation routine (j=1..5)
Jj-validation set =70 molecules Do
: j-balanced
sampling by .
™ C modeling set
similarity:

=180
; ' -120
j-modeling set =300 molecules molecules
~ molecules




Hybrid
descriptors
(Original,
binary)

Chemical
%0 descriptors
only

Hybrid
descriptors
(THR=15%)

KNN

models

Random
Forest (RF)
models

Sensitivity
Specificity
CCR

Sensitivity
Specificity
CCR

68+8
8514
76 £5 *

7419
8217
78 +4 *

6319
8614
74 £5

6618
874
77 5

7615
8712
82 +3

77£10
8613
82 +5



Relative contribution of gHTS dose-response descriptors to QSAR models
varies between cell-lines

Average frequency [HUV-EC-C

urkat
Mesenchymal




Hybrid

Cl.lemical it Hybrid descriptors
toPKAT | descriptors only (Original) (THR=15%)
kNN RF kNN RF kNN RF
Sensitivity 0.45 0.73 0.73 0.55 0.82 0.91 0.91
Specificity 0.93 0.78  0.80 0.85 0.78 0.85 0.83
CCR 0.69 * 0.75  0.77 0.70 0.80 0.88 0.87

Results are shown for 52 compounds in our external validation sets, which were also absent in
the TOPKAT training set.

*TOPKAT model was significantly different (p < 0.05) from all other models by the permutation
test (10,000 times).



Case Study 3: QSAR + Toxicogenomics*

Rationale

e Hybrid models of chemical and biological descriptors (in vitro
assays, dose response curves) improved prediction of toxicity (Zhu
2008, Sedykh 2010)

e Toxicogenomics has proven predictive and interpretative value

Hypothesis

e Adding toxicogenomics data as biological descriptors to hybrid
QSAR models may improve predictivity.

About the data set

e The Toxicogenomics Project (TGP), Japan collected microarray
profiles of 150 common drugs covering various hepatotoxic
modes of action http://toxico.nibio.go.ip/

*Low et al. Predicting Drug-induced Hepatotoxicity Using QSAR and Toxicogenomics Approaches.
Chem. Res. Toxicol., 2011, 24(8):1251-62.



Data available from TGP

http://toxico.nibio.qo.jp/

Table 2. The standard study protocol in TGP 127 drugs
In vivo
Animal Sprague-Dawley rat (6 wk old, N =5 for each
group)
Vehicle 0.5% Methylcellulose or corn oil (oral dose)
Saline or 5% glucose solution (intravenous
dose|
Dose Low, middle, and Fi~* (mainly 1:3:10) Hepatotoxicity
Route Oral (intravenous in a few cases) (based on serum
Sacrifice 3,6,9 and” " after a single administration
24 h after the last dose of repeated chemistry and
administration for 3, 7, 14 and 28 days histopathology)
Sampling Liver, kidney, and plasma
Microarray Affymetrix GeneChip (N =3 for each group)
analysis Cokmn 2 Hepatotoxicity
ltemns Moo puuioyy: oo and kidney aam 3

examined Body weight, organ weight {liver and
kidney), food consumption, hematology,
andb C

Source: Uehara 2010

Gene expression data used: taken from rats treated
with the highest dose after 24h.




Chemical curation and feature selection

For QSAR
models

304 Dragon
descriptors

116 MOE
descriptors

271 SIRMS
descriptors

-

Chemical
descriptors

2,030 Dragon
descriptors

185 MOE
descriptors

2,297 SiRMS
descriptors

127 curated

compounds

. : Removal of low-variance and highly correlated descriptors

Gene expression 24h

For toxicogenomic

models

after highest dose

31,042
transcripts

Compare with
treated control

2,991
transcripts

-y

Top 4 transcripts

Top 30 transcripts

Top 100 transcripts

Top 400 transcripts

Rank by significant
difference
between toxic and
nontoxic classes

2,923 transcripts




Predicting hepatotoxicity from
chemical descriptors and/or gene expression

Desc
304

- T Em-m

de 1

de 1 \

x° - %
Cpd 2 Cpd 2
Cpd 3 ‘\Q de 3 oe

00 up to 127 x 2923

_ 09 up to 127 x 304
ra O de 127

68+ 717%
46-61% 69-76%
CCR Hybrld models CCR
QSAR models T°X Toxicogenomic
models

l
0
0

5-fold external cross validation
Classification methods used:

k nearest neighbour,

Support vector machine
Random forests

Correct
Classification =
1 Rate (CCR) 2

specificity + sensitivity




50% of 40 closest pairs in chemical space are activity cliffs

CID
74,118
40,53
63,64
20,110
83,84
72,127
5,14
24,94
11,25
16,115
116,117
30,66
52,67
44,105
17,49
19,62
10,112
8,46
85,95
77,103
99,111
38,122
2,60
39,82
104,123
58,90
9,113
56,78
69,107
1,54

36,75

Compounds

mefenamic acid, phenylanthranilic acid
methyltestosterone, ethinylestradiol
imipramine, amitriptyline
benzbromarone, benziodarone
theophylline, caffeine

erythromycin ethylsuccinate, doxorubicin

valproic acid, aspirin
methapyrilene, promethazine
phenylbutazone, phenytoin
thioacetamide, ethanol
phenacetin, bucetin

gemfibrozil, ibuprofen
tamoxifen, quinidine
perhexiline, terbinafine
carbamazepine, pemoline
nitrofurantoin, nitrofurazone
allyl alcohol, bromoethanamine
rifampicin, tetracycline
papaverine, colchicine
chlorpheniramine, clomipramine
simvastatin, etoposide
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fenofibrate, chlormadinone
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33% of 40 closest pairs in gene expression space are activity cliffs

CID
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19,22
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Compounds

iproniazid, erythromycin ethylsuccinate

griseofulvin, ketoconazole
cimetidine, labetalol
nicotinic acid, enalapril
chlorpropamide, gentamicin
ranitidine, captopril
haloperidol, fluphenazine
diclofenac, ethanol
tetracycline, ciprofloxacin
naphthyl isothiocyanate, triamterene
phenytoin, hydroxyzine
metformin, amitriptyline
methotrexate, tiopronin
triazolam, chlormadinone
methimazole, ethambutol
ibuprofen, mefenamic acid
sulpiride, clomipramine
isoniazid, thioridazine
tacrine, imipramine
chloramphenicol, terbinafine
lomustine, acarbose
allopurinol, vancomycin
perhexiline, furosemide
nitrofurantoin, diazepam
clofibrate, benziodarone
methyltestosterone, trimethadione

carbon tetrachloride, cyclosporine A

sulindac, ethionamide
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A novel consensus kNN approach: learning from
nearest chemical and toxicogenomic neighbors (k=5)
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Consensus vs. Hybrid Descriptors kNN

— mew Chemical 304 Dragon desc 0.56 0.65 0.59
neighbors only

N 'Kl}“ . Toxicogenomic 85 transcripts 5 075 079 0.74
neighbors only

WG RGTET4 o101 i3 304 Dragon desc 6 069 0.77 0.71
85 transcripts
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e Mhmmpemm W Chemical 304 Dragon desc, 5 076 0.80 0.78
neighbors & 85 transcripts
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Conclusions

* Methodology:
— Data curation is critical!

— consensus (collaborative!) prediction using all acceptable
models

— outcome: decision support tools in selecting future
experimental screening sets

* The highest accuracy is achieved by models that
employ both chemical and biological descriptors of
compounds

— Integration of cheminformatcs and bioinformatics: predictive
model s of selected endpoints using integrated short term

biological profiles (biodescriptors ) and chemical descriptors
for compound subsets

— New computational approaches (e.g., hybrid and
hierarchical QSAR)

— Interpretation of significant chemical and biological
descriptors




Cheminformatics for masses!

Sl UNC.EDU

http://chembench.mml.unc.edu

HOME MY BENCH DATASET MODELING PREDICTION CECCR BASE

ACCELERATING CHEMICAL GENOMICS RESEARCH BY Please login
CHEMINFORMATICS —

_________________________________________ Or, login as a guest

Chembench is a free portal that enables researchers to mine available chemical and

biological data. Chembench can help researchers rationally design or select new compounds New Users
or compound libraries with significantly enhanced hit rates in screening experiments. Please register here

b Help & Links

2 .
\ \/—- .
‘ Chembench Overview
( : Chembench Workflows & Methodology
2 -_. Links to More Cheminformatics Tools

It provides cheminformatics research support to molecular modelers, medicinal chemists and

guantitative biologists by integrating robust model builders, property and activity predictors,

virtual libraries of available chemicals with predicted biological and drug-like properties, and i
special tools for chemical library design. Chembench was initially developed to support We thank the followmg
researchers in the Molecular Libraries Probe Production Centers Network (MLPCN) and the Commercial_ Vendors:

Chemical Synthesis Centers.

Please cite this website using the following URL: http://chembench.mml.unc.edu

““““““““““““““““““““““ CHEMICAL )

. . . . . COMPUTING (‘
The Carolina Cheminformatics Workbench (Chembench) is developed by the Carolina GROUP &
Exploratory Center for Cheminformatics Research (CECCR) with the support of the National b o s e TALETE srl
Institutes of Health (grants P20HG003898 and R01GMO066940) and the Environmental Protection
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