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Layout of presentation

Introduction:
• Why accuracy of prediction is important?

Methods:
• What is a Distance to Model? How can we estimate it? What is a property-based space?

Case study 1: Prediction of environmental toxicity

Case study 2: Benchmarking of lipophilicity (logP) predictions

Case study 3: AMES test prediction

Case study 4: CYP450 prediction

Conclusions



Which common challenges do they face?



Kozma Prutkov

"One can not embrace the unembraceable.”

Possible: 1060 - 10100 molecules theoretically exist

Achievable: 1020 - 1024 can be synthesized now
by companies (weight of the Moon is ca 1023 kg)

Available: 2*107 molecules are on the market

Measured: 102 - 105 molecules with ADME/T data

Problem: To predict ADME/T properties of just molecules
on the market we must extrapolate data from one to
1,000 - 100,000  molecules!

There is a need for methodsThere is a need for methods
which can estimate which can estimate 
the accuracy of predictions!the accuracy of predictions!

NO

OOH

 1080 atoms in the Universe



Representation of Molecules

Can be defined with calculated
properties (logP, quantum-
chemical parameters, etc.)

Can be defined with a set of
structural descriptors
(toxicophores, 2D, 3D, etc).

The descriptors are used to define
the applicability domain.

  

! 

12.3
4.6
M

13.2
10.1

" 

# 

$ 
$ 
$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 
' 
' N

HO

  

! 

13.7
4.8
M

15.8
12.0

" 

# 

$ 
$ 
$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 
' 
' 

N

HO

Distance to model:



Examples of distances to models (DM) in
descriptor space

Jaworska et al, ATLA,
2005, 33, 445-459.
Tetko et al, DDT,
2006, 11, 700-7.

Euclidian Mahalanobis (Leverage)

City-block Probability-density

1) Only two descriptors
are used.

2) Colors refer to the
same values.

3) More complex DMs
(property-based DMs)
also include the target
property.2



The descriptor space challenge

We need to know the target property and select correct descriptors!



Property-based space illustration

Do they agree in their votes (STD)?
Do they have the same pattern of votes (CORREL)?



Associative Neural Network Property-Based DMs
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logP=3.11

logP=3.48

Morphinan-3-ol, 17-methyl-

Levallorphan

STD - standard deviation
of ensemble predictions

CORREL - correlation
between vectors of
predictions

Tetko et al, DDT, 2006, 11, 700-7.



1:1: Estimation of toxicity against T. pyriformis

The overall goal is to predict and to assess the reliability of predictions
toxicity against T. pyriformis for chemicals directly from their structure.

Prof. T.W. SchultzT. pyriformis 

Dataset: 1093 molecules

Zhu et al, J. Chem. Inf. Model, 2008, 48, 766-84.



CAse studies on the development and application of in-silico
techniques for environmental hazard and risk assessment

Challenge (deadline was Sep. 10) co-organized 
with the European Neural Network Society



Analyzed QSARs (Quantitative Structure Activity
Relationship) and  distances to models (DM)

distances to models (in space) country  modeling techniques descriptors abbreviation 
descriptors property-based 

ensemble of 192 
kNN models 

MolconnZ kNN-MZ EUCLID STD 

ensemble of 542 
kNN models 

Dragon kNN-DR EUCLID STD 

SVM MolconnZ SVM-MZ   

 

 
 SVM Dragon SVM-DR   

SVM Fragments SVM-FR   
kNN Fragments kNN-FR  
MLR Fragments MLR-FR 

EUCLID, 
TANIMOTO  

 

  MLR Molec. properties 
(CODESSA-Pro) 

MLR-COD   

 

 
OLS 

 
Dragon 

 
OLS-DR 

 
LEVERAGE 

 

 

 
PLS 

 
Dragon 

 
PLS-DR 

 
LEVERAGE 

 
PLSEU 

 

ensemble of 100 
neural networks 

 
E-state indices 

ASNN-
ESTATE 

  
CORREL, STD 

All consensus model - CONS  STD 
 

Tetko et al, J Chem Inf Model, 2008, 48(9):1733-46.



Overview of analyzed distances to models (DMs)

CORREL

CORREL(a) =maxj CORREL(a,j)=R2(Ya
calc,Yj

calc)

Ya=(y1,…,yN) is vector of predictions of molecule i

STD

          yi is value calculated with model i and    is average
value

PLSEU (DModX)

Error in approximation (restoration) of the
vector of input variables from the latent
variables and PLS weights.

LEVERAGE

                LEVERAGE=xT(XTX)-1x

TANIMOTO

xa,i and xb,i are fragment counts

EUCLID

              EUm=                 k is number of nearest
                                               neighbors, m index of
                                               model

! 

d j
j=1

k

"

k

! 

EUCLID = EU m

! 

Tanimoto(a,b) =
xa,ixb,i"

xa,ixa,i +" xb,ixb,i # xa,ixb,i""

! 

STD =
1

N "1
yi " y ( )#

2

! 

y 



Property-based space: DM does work!

STD

Tetko et al, J. Chem. Inf. Model, 2008, 48, 1733-46.

STD



Descriptor space: DM does not work

Mahalanobis (Leverage)

Tetko et al, J. Chem. Inf. Model, 2008, 48, 1733-46.



Mixture of Gaussian
Distributions (MGD)

Idea is to find a MGD,
which maximize
likelihood (probability)

! N(0,!2(ei))

 of the observed
distribution of errors



Ranking of Distance to Models (DM)

average rank highest rank1 DM 
 LOO 5-CV Valid.* LOO 5-CV Valid. 
STD-CONS 1 1.8 1.1 12 2 11 
STD-ASNN 2 1.2 2.5  10 1 
STD-kNN-DR 6.6 4.3 4.1    
STD-kNN-MZ 9.2 8.3 5.3    
EUCLID-kNN-DR 7.1 4.9 5.4    
LEVERAGE-PLS 8.4 5 6.3    
EUCLID-kNN-MZ 7.5 7.1 6.4    
TANIMOTO-kNN-FR 7 6.1 6.8    
TANIMOTO-MLR-FR 8.3 8.3 9    
CORREL-ASNN 10.7 10.8 9.4    
LEVERAGE-OLS-DR 12.3 12.6 11.1    
EUCLID-MLR-FR 7 9.3 11.5    
PLSEU-PLS 11.1 11.8 11.5    
EUCLID-kNN-FR 12.1 13.3 12.1    

 
*Ordered by performance of the DMs on the validation dataset

Tetko et al, J. Chem. Inf. Model, 2008, 48, 1733-46.



Analysis of DMs for a linear model

Log(IGC50
-1)=

-18(±0.7) +0.065(±0.002)AMR-
0.50(0.04)O56-0.30(0.03)O58

-0.29(0.02)nHAcc+0.046(0.005)H-
046+16(0.7)Me

The use of various DM
provides different
discrimination of molecules
with low and large errors.

Tetko et al, J Chem Inf Model, 2008, 48(9):1733-46.

STD



2: Benchmarking of logP calculators

Existing Dogma:

• Prediction of physico-chemical properties, in
particular log P, is simple

• There is no need to measure them

• We have enough number of good computational
methods

Is this true?



18 methods (major commercial providers and public software)

in house data:

95809 molecules from Prizer

889 molecules from Nycomed

Arithmetic Average Model (AAM):
mean logP was used as a prediction (one value for all molecules)

Rank III: models with errors (RMSE) ! AAMAAM, i.e. non-predictive

Rank I:   models with RMSE identical or close to the best method

Rank II:  remaining models

Data & background models

Mannhold et al, J. Pharm. Sci., 2009, 98, 861-893.



Large number of methods
could not perform better
than the AAMAAM model !

Mannhold et al, J. Pharm. Sci., 2009, 98, 861-893.

 
Pfizer set (N = 95 809) Nycomed set (N = 882) 

% in error range % in error range 
 

Method RMSE rank 
<0.5 0.5-

1 
>1 

RMSE, 
zwitterions 
excluded2 

RMSE rank 
<0.5 0.5-

1 
>1 

Consensus logP 0.95 I 48 29 24 0.94 0.58 I 61 32 7 

ALOGPS 1.02 I 41 30 29 1.01 0.68 I 51 34 15 

S+logP 1.02 I 44 29 27 1.00 0.69 I 58 27 15 

NC+NHET 1.04 II 38 30 32 1.04 0.88 III 42 32 26 

MLOGP(S+) 1.05 II 40 29 31 1.05 1.17 III 32 26 41 

XLOGP3 1.07 II 43 28 29 1.06 0.65 I 55 34 12 

MiLogP 1.10 II 41 28 30 1.09 0.67 I 60 26 14 

AB/LogP 1.12 II 39 29 33 1.11 0.88 III 45 28 27 

ALOGP 1.12 II 39 29 32 1.12 0.72 II 52 33 15 

ALOGP98 1.12 II 40 28 32 1.10 0.73 II 52 31 17 

OsirisP 1.13 II 39 28 33 1.12 0.85 II 43 33 24 

AAM 1.16 III 33 29 38 1.16 0.94 III 42 31 27 

CLOGP 1.23 III 37 28 35 1.21 1.01 III 46 28 22 

ACD/logP 1.28 III 35 27 38 1.28 0.87 III 46 34 21 

CSlogP 1.29 III 37 27 36 1.28 1.06 III 38 29 33 

COSMOFrag 1.30 III 32 27 40 1.30 1.06 III 29 31 40 

QikProp 1.32 III 31 26 43 1.32 1.17 III 27 24 49 

KowWIN 1.32 III 33 26 41 1.31 1.20 III 29 27 44 

QLogP 1.33 III 34 27 39 1.32 0.80 II 50 33 17 

XLOGP2 1.80 III 15 17 68 1.80 0.94 III 39 31 29 

MLOGP(Dragon) 2.03 III 34 24 42 2.03 0.90 III 45 30 25 
 

Benchmarking of logP methods for in-house
data of Pfizer & Nycomed

Catastrophe !?



ALOGPS 2.1ALOGPS 2.1

••LogPLogP:: 75 variables,
12908 molecules,
RMSE=0.35,
MAE=0.26

•LogS: 33 variables,
1291 molecules,
RMSE=0.49,
MAE=0.35

Tetko et al, J. Comput. Aided Mol.
Des. 2005, 19, 453-63.

Tetko & Tanchuk, J. Chem. Info.
Comput. Sci., 2002, 42, 1136-45.

http://vcclab.org



ALOGPS self-learns new data to cover new scaffolds

N=95809 (in house Pfizer data)

ca 30 minutes of calculations on a notebook!

RMSE=1.02 RMSE=0.59

ALOGPS Blind prediction ALOGPS LIBRARY

Tetko et al, QSAR Comb. Sci., 2009, 28, 845-9.

CORREL



Local correction of a model based on
nearest neighbors

CORREL



Estimation of the model accuracy
by the distance to nearest neighbors

Real activity

Predicted activity

x

x

CORREL



Tetko et al, Chemistry & Biodiversity, 2009, in press.

ALOGPS distinguishes reliable vs. non-reliable predictions
in property-based space (CORREL)

Non-reliable  Reliable

CORREL identifies 
60% of molecules 
predicted 
with average accuracy of 
0.3 log units



ALOGPS dramatically improves accuracy

Only reliable predictions (and we know “who is who”!)  have much higher accuracy.

CORREL



3: Prediction of Ames Mutagenicity set

http://ml.cs.tu-berlin.de/toxbenchmark

Toxicity against Salmonella typhimurium

Data set: 4361 molecules

67% with mutagenic effect (background
model)

Large international collaboration effort of
13 labs from USA, Canada, EU, Russia,
Ukraine & China

1Schwaighofer et al, JCIM, 2008, 48, 785-96.

Prof. Bruce N. Ames
Inventor of the test (1975)



Associative Neural Network analysis of Ames set

Best

Good

in preparation

Only reliable predictions (15% of all data points) are 22%/5% = 4 times4 times more accurate!

*Coverage of model

STD



4: Prediction of CYP450 1A2 inhibitors

http://pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?aid=410

Bioassay AID 410

One of the test performed within NIH Roadmap

4177 active molecules

3680 inactive molecules

53% were inhibitors of CYP
(background accuracybackground accuracy)

Dr. Elias Zerhouni 
Former NIH director (2002-2008)



Associative Neural Network analysis of CYP450 set

Best

Good

in preparation

The most reliable predictions (30% of all molecules) are 21%/5% = 4 times4 times more accurate!

*Coverage of model

STD



ADMETox and in silico challenges

Developed methodology allows navigation in space of molecules with a confidence and:

! to develop targeted (local) models to cover specific series.

! to reliably estimate which compounds can/can’t be reliably predicted.

!  to provide experimental design and to minimize costs of new measurements.

"" This is our expertise and This is our expertise and ““know-howknow-how”” that we are applying to new data. that we are applying to new data.

reliable predictions

N

O O

new measurement

N O

O OHN O

O

new series to predict
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