QSPR Models for Predictions and Data Quality Assurances: Melting Point and Boiling Point of Perfluorinated Chemicals Barun Bhhatarai[#], Wolfram Teetz^d, Tomas Öberg[†], Tao Liu[†], Nina Jeliazkova[‡], Nikolay Kochev[§], Ognyan Pukalov[§], Igor V. Tetko^d, and Paola Gramatica[#],* [#]QSAR Research Unit in Environmental Chemistry and Ecotoxicology, Department of Structural and Functional Biology (DBSF), University of Insubria, via JH Dunant 3, Varese, 21100, Italy. Email: paola.gramatica@uninsubria.it; †School of Pure and Applied Natural Sciences, Linnaeus University, SE-391 82, Kalmar, Sweden. Email: Tomas.Oberg@lnu.se; ‡Ideaconsult Ltd, 4 A. Kanchev str., Sofia 1000, Bulgaria; [§]Department of Analytical and Computer Chemistry, University of Plovdiv, 24 Tsar Assen Str., Plovdiv 4000, Bulgaria. Email: nina@idea.bg; [§]Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum Muenchen - German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany. Email: itetko@vcclab.org

ABSTRACT

Quantitative structure-property relationship (QSPR) studies on Melting Point and Boiling Point of Perfluorinated Chemicals (PFCs) are presented. PFCs are studied under the EU-FP7 funded CADASTER project to understand its behavior in biota and environment. They are considered as 'emerging pollutants' and found widely distributed in the environment, released due to their widespread use in different household and industrial products as cleansers, fire-fighting foams, micelles, repellants for leather, paper, and textiles etc. Continues exposure of these chemicals is found to be the source of bio-accumulation in body parts of human, wildlife and is ultimately becoming the cause of toxic reactions and poisoning.

Models are developed using SRC PhysProp data as described below. In addition, the predictive performances of the developed models were verified on a blind external validation set (EV-set) prepared from experimental values available from PERFORCE database. This database contains only long chain perfluoro-alkylated chemicals, particularly monitored by regulatory agencies like US-EPA and EU-REACH. QSPR modeling using different approaches, internal and external validation on two different prediction sets and studies of the applicability domain highlight the robustness and high accuracy of the proposed models. Finally, Melting Point for additional 397 PFCs and Boiling Point for 364 PFCs for which experimental measurements are unknown were predicted, verifying their applicability domain. The set of descriptors which best describes the structureproperty relationship, the similarities, and the differences observed will be discussed as well as the consensus model predictions.

MATERIALS AND METHODS

	1					
HMGU, Germany	IDEA Consuit, Bulgaria	UI , Italy	LNU, Sweden			
E-State indices	Fragement based	DRAGON (0D - 2D)		PERFORCE data SRC Phys-Prop + Literature data (response)		
Pearson Pairwise Correlation	Exhaustive isomorphism search of fragment against structure	Pearson Pairwise Correlation & Genetic Algorithm	variable influence on projection (VIP)	93 Boiling Point BP 94 Melting Point MP		
MP = 87 indices BP = 66 indices	MP = 3 descriptors BP = 8 descriptors	MP = 3 descriptors BP = 3 descriptors	MP = 37 descriptors at 3 components BP = 149 descriptors at 4 components	Training QSAR models 50% Set Prediction Set $Q^2_{CV}, Q^2_{BOOT}, R^2_{VX}, R$		
Associative Neural Network (<mark>ASNN</mark>) Architecture: 10x3x1	Multiple Linear Regression (MLR) using ordinary-least-squares (OLS)		Partial least squares regression (PLSR)	External Validation Set 15 MP, 25 BP Accepted models and > 0.70		
al Double: tion Prediction sets by splitting and blind External Validation set			Single: External Validation Set			
Distance to model (DM) on standard deviation of ensemble prediction, 5xcross-validation	Leverage approach	(H matrix) for	residual standard deviation (Euclidean distance) and leverage (Mahalanobis distance)	Final Predictive models > 0.70		
	E-State indices Pearson Pairwise Correlation MP = 87 indices BP = 66 indices Associative Neural Network (ASNN) Architecture: 10x3x1 Prediction sets by s Distance to model (DM) on standard deviation of ensemble prediction,	E-State indices Fragement based Pearson Pairwise Correlation Exhaustive isomorphism search of fragment against structure MP = 87 indices BP = 66 indices MP = 3 descriptors BP = 8 descriptors Associative Neural Network (ASNN) Architecture: 10x3x1 Multiple Linear Regress ordinary-least-sq ioxist Prediction sets by splitting and blind Exter Distance to model (DM) on standard deviation of ensemble prediction, Williams plot for re Leverage approach structural chem	E-State indices Fragement based DRAGO Pearson Pairwise Correlation Exhaustive isomorphism search of fragment against structure Pearson Pairwise Correlation & Genetic Algorithm MP = 87 indices MP = 3 descriptors MP = 3 descriptors BP = 66 indices MP = 3 descriptors MP = 3 descriptors Associative Neural Network (ASNN) Architecture: Multiple Linear Regression (MLR) using ordinary-least-squares (OLS) Iox3x1 Double: Prediction sets by splitting and blind External Validation set Distance to model (DM) on standard deviation of ensemble prediction, Williams plot for response outliers Leverage approach (H matrix) for structural chemical domain	E-State indices Fragement based DRAGON (oD - 2D) Pearson Pairwise Correlation Exhaustive isomorphism search of fragment against structure Pearson Pairwise Correlation & Genetic Algorithm variable influence on projection (VIP) MP = 87 indices MP = 3 descriptors BP = 86 indices MP = 3 descriptors BP = 8 descriptors MP = 3 descriptors BP = 3 descriptors MP = 37 descriptors at 3 components Associative Neural Network (ASNN) Architecture: Multiple Linear Regression (MLR) using ordinary-least-squares (OLS) Partial least squares regression (PLSR) Prediction sets by splitting and blind External Validation set Single: External Validation Set Single: External Validation Set Distance to model (DM) on standard deviation of ensemble prediction, Williams plot for response outliers structural chemical domain residual standard deviation (Euclidean distance) and leverage		

Data Quality Assurance

CAS	Endpoint reported	Data from PhysProp (°C) used by UI, LNU, IDEA	UI Predictions	LNU Predictions	Data (°C) used by HMGU and the references	HMGU Predictions
76-16-4	MP	-101.00	-155.71	-138.33	-155.60	-111.656
307-34-6	MP	-42.0	-50.36	-54.73	-56.80	-57.435
307-55-1	MP	108.0	75.63	107.29	111.0 [33]	66.166
354-32-5	MP	146	2.45	-91.56	-146.0 [34]	-86
375-22-4	MP	-17.5	13.40	-1.99	-18.0 [33]	13.248
423-55-2	MP	25*	-22.74	-40.99	-6.0 [35]	-59.167
1493-13-6	MP	25*	50.26	-31.38	-40.0 [36]	-12.567
426-65-3	$MP \rightarrow BP$	75.5	32.29	-21.43	n/a [37]	n/a
355-46-4	BP	238.5	228.71	241.87	225.0 [38]	221.176
375-73-5	BP	211.0	196.93	207.33	200.0 [39]	191.358

RESULTS AND DISCUSSION

Dragon descriptors allow a complex and differentiated view on the molecule, while E-State indices give a more uniform description and Fragment based descriptors provide an easily interpretable base for modeling. For simple properties like boiling point, fitting a small, variable-selected MLRA model to the data subset provides excellent results. This approach is also robust against erroneous data. At the complexity level of melting point (or e.g. vapor pressure), this approach competes in quality with E-State-ASNN models, that are easily obtainable from scratch. The well interpretable but quite tedious approach using selected fragment descriptors results in a slight drop in model quality. Also, since literature data is often published for classes of compounds that are directly connected to fragments, common systematic errors (such as pressure variations for BP) give low RMSE of the models but inadequate models, so extra care has to be taken here in the validation step. It is remarkable that data collected from the databases has a high number of errors like mixed up algebraic signs or approximated values, so that data validation and overlap is necessary. Here, the relation between BP and MP gives valuable information that can be employed. As expected, the accuracy of the prediction models is better than for 'generic' boiling and melting point models.

REFERENCES [1]ESTATE: Kier, L. B.; Hall, L. H. An Electrotopological State Index for Atoms in Molecules. Pharm. Res. 1990, 7, 801-807. [3]DRAQON: TALEE ser, Nu Y. Pisani, 13 - 20124 Milano - Italy [3]JASNN, Tetko, L. V. Associative neural network, Neural Processing Letters, 2002, 16, 187-199. [4]MATALANDRIS, Mahalanobits, Mahalanobits, Malanobits, Materianobits, PC (1936). [5]AD, Jaworska, J., Nikolova-Jeliazkova, N., Addenberg, T. (2005). QSAR applicability domain estimation by projection of the training set in descriptor space: A review. ATLA-Alternatives to Laboratory Animals 33(5): 445-459. [5]AD, Jaworska, J., Nikolova-Jeliazkova, N., Addenberg, T. (2005). QSAR applicability domain estimation by projection of the training set in descriptor space: A review. ATLA-Alternatives to Laboratory Animals 33(5): 445-459. [5]AD, Jaworska, J., Nikolova-Jeliazkova, N., Addenberg, T. (2005). QSAR applicability Domain of QSPR Models for physico-chemical properties of Polybrominated Diphonyletters QSAR and Combinatorial Science, 2009, 28, 790-790.

Financial support by European Union through the project CADASTER FP7-ENV-2007-1-212668

RMSE Comparison

CONCLUSIONS

Melting Point

(94) **Boiling Point**

(93)

EPI

RMSE

47.97 44.09 32.81

24.80 23.24 14.12

UI LNU HMGU

The results fit our experience that a consensus model, built from

independently developed models using different descriptors and

the special case of PFCs, simple statistical algorithms applied to complex descriptors perform about as good as complex algorithms

applied to simple descriptors. Developing both types of models

interpretation of and experimental design emerging from the

and opens lots of possibilities to analyze them. Chemical

views of the underlying mechanics.

enables a more specialized and also more detailed look on outliers

models benefit from having a set of models representing different

using different algorithms, delivers the best prediction results. In

36

32