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HMGU 
Predictions 

76-16-4 MP –101.00 –155.01 –138.33 -154.67 –155.60 -111.66 
307-34-6 MP –42.0 –29.65 –54.73 -43.58 –56.80 -57.45 
354-32-5 MP 146 -8.11 -91.56 -40.85 –146.0 -86 
423-55-2 MP <25 -4.11 -40.99 -27.71 –6.0 -59.17 
1493-13-6 MP <25 37.76 –31.38 14.82 –40.0 -12.57 
426-65-3 MP  BP 75.5 53.87 -21.43 -0.003 n/a n/a 
355-46-4 BP 238.5 227.69 241.87 212.34 225.0 217.02 
375-73-5 BP 211.0 195.62 207.33 182.77 200.0 191.36 

RMSE (training set) 
EPI UI LNU* HMGU IDEA 

Melting Point 
(94) 47.97 42.42 31.12 36.48 40.67 

Boiling Point 
(93) 24.80 21.39 14.12 31.89 17.25 

RESULTS AND DISCUSSION 

RMSE (PERFORCE) 
EPI UI LNU* HMGU IDEA 

Melting Point 
(15) n/a 27.19 26.54 34 38 

Boiling Point 
(25) n/a 30.32 21.92 22 23 

*LNU model was developed without external validation 
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MP Model UI LNU HMGU IDEA 
R2 Q2

LOO range Q2
EXT R2 Q2

LOO R2 R2
EXT R2 Q2

LOO range Q2
EXT 

SOM split 0.83 0.79 0.61-0.76 0.90 0.85 0.80 0.75 0.86 -- 0.61-0.76 
Random split 0.84 0.80 0.73-0.76 0.90 0.84 0.81 0.75 0.84 -- 0.72-0.76 
FULL model 0.80 0.78 -- 0.89 0.86 0.85 -- 0.80 0.78 -- 

BP Model UI LNU HMGU IDEA 
R2 Q2

LOO range Q2
EXT R2 Q2

LOO R2 R2
EXT

 R2 Q2
LOO range Q2

EXT 
SOM split 0.95 0.94 0.86-0.91 0.98 0.94 0.79 0.58 0.95 -- 0.92-0.95 
Random split 0.94 0.92 0.93-0.94 0.98 0.93 0.78 0.57 0.96 -- 0.93-0.94 
FULL model 0.94 0.93 -- 0.97 0.94 0.85 -- 0.95 0.94 -- 

  Combination of different modeling approach also helps to replenish the inability of one 
model with the support of another.  
  The results fit our experience that a consensus model, built from independently 
developed models using different descriptors and using different algorithms, delivers 
the best prediction results.  
  In the special case of PFCs, simple statistical algorithms applied to complex 
descriptors perform about as good as complex algorithms applied to simple descriptors. 
Developing both types of models enables a more specialized and also more detailed look 
on outliers and opens lots of possibilities to analyze them.  
  Chemical interpretation of and experimental design emerging from the models benefit 
from having a set of models representing different views of the underlying mechanics. 
  The data collected from the database has a high number of errors like mixed up 
algebraic signs or approximated values, so that data validation and overlap is necessary. 
Our approach which deals with the relation between BP and MP gives valuable 
information that can be employed and is also robust against erroneous data. 


