HelmholtzZentrum münchen

German Research Center for Environmental Health

Modeling of physicochemical properties for perfluorinated compounds using a data integration approach

Wolfram Teetz

Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH) Institute of Bioinformatics & Systems Biology

Idstein, Fresenius, 19. Juni 2010

HelmholtzZentrum münchen German Research Center for Environmental Health

HelmholtzZentrum münchen

German Research Center for Environmental Health

- Efficiently use scarce and scattered information available

- Reduce animal testing - use in silico and in vitro information on related compounds.

HelmholtzZentrum münchen

German Research Center for Environmental Health

- Practical guidance to integrated risk assessment
- Full risk assessment for four compound classes (incl. PFC)
- Explicit uncertainty in data and in models
- Applicability domain
- Exemplify integration of information for risk assessments for large numbers of substances.
- How to use non-testing information for regulatory decision

FP7-funded 2009-01-01 end: 2012-12-31

ITS

Method	Costs	Time	Quality
Blind <i>in-vitro</i> testing of all compounds			
Blind <i>in-silico</i> testing of all compounds			
in-silico testing plus intelligent testing of selected compounds			

What compound to measure? What property to measure?

What property to predict?

What property can be predicted from another one? -> Knowledge

The accuracy + AD has to be estimated in the end !

Properties of molecules

- Data are lost after publication of an article
- The original sources of data are difficult to track
- The conditions of experiments are frequently not provided
- The conversion between different units is error prone
- Current databases do not allow community correction of errors
- The tracking of changes (by users) is required

Models

- Most published models are never used
- Implementation can be as difficult as new model development
- Different implementations can produce different results

- "Wiki" approach to data handling users can add, modify and delete data
- Mandatory reference to an origin of information each record in a database should contain a reference to a source (article, book, proceeding or even personal communications), where the data were published
- Storing rich information we store measurement conditions to increase data quality
- Several tools to support decision making integration with other web-services (validation of molecule names against PubChem database, automatic fetching of article information from PubMed), duplicate records management
- Aimed at model building convenient to build training sets from data - filter by property, article and export data either to internal modelling tools or download as Excel file

į	Overview Applicability domain							
N F F T r	Nodel name: BarunMPBP.BP-PERFORCE-28apr10v1 [rename] Public ID is 2627848 Predicted property: Boiling Point rraining method: ANN neasured in °C							[EState] Correl. limit: 0.95 Supersab, 1000 iterations, 3 neurons 5-fold cross-validation 66 filtered descriptors
	Data Sat	Origi	nal		Reca	Iculated	W	Supersab, 1000 iterations, 3 neurons
	Data Set	R2	RMSE	MAE	R2	RMSE	MAE	Calculated in 68 seconds
	Training set: BarunMPBP.BP-28apr10v1-93 (93 records)	<mark>0.8</mark> 4	32.40	20.88	0.85	31.90	20.17	
	Test set: BarunMPBP.BP-PERFORCE-28apr10v1-25 (25 records)	0.77	24.54	20.23	0.80	22.07	18.07	
j. 1	300 200 100 0 0 0 0 0 0 0 0 0 0 0 0	o 50 -1	8 e	ం ల్లాంల్ల్లి	ං සංශ්	100	150	200 250 300

Overview Applicability domain							
Model name: BarunMPBP.MP-PERFORCE-28apr10v1 [rename] Public ID is 5666671 Predicted property: Melting Point Training method: ANN measured in °C							[EState] Correl. limit: 0.95 Supersab, 1000 iterations, 3 neurons 5-fold cross-validation 87 filtered descriptors
Data Sat	Origi	nal		Reca	lculated	W	Supersab, 1000 iterations, 3 neurons
Data Set	R2	RMSE	MAE	R2	RMSE	MAE	Calculated in 35 seconds
Training set: BarunMPBP.MP-28apr10v1-93 (93 records)	0.84	36.96	30.59	0.85	36.69	30.38	
Test set: BarunMPBP.MP-PERFORCE-28apr10v1-15 (15 records)	0.21	35.09	29.43	0.22	34.12	28.34	
200 100 0 -100 -200 -200 -200 -200 -200 -100 -200 -100 -200 -200 -100 -200 -200 -100 -200 	• •	%%%%	00 00 00 00 00	50	8 8 8 °	50 1	0 0 0 0 0 0 0 0 0 0

Model name: MP BP Model - Perforce Training method: ANN

Property: Melting Point measured in °C (Details..)

Property: Boiling Point measured in °C (Details..)

Data Set	R2	RMSE	MAE
Barun MPBP-MPBP Train(93)	0.85	31.76	20.52
PERFORCE MPBP(25)	0.78	22.78	17.02

Save the model

Please enter your model's name: Melting Point 10->108

Save the model

Please enter your model's name: Melting Point from BP

Model name: Melting Point, set 3730, 67 Training method: ANN

Data Set	R2	RMSE	MAE
NewBP118(10)	0.73	53.63	48.16
NewMP108(98)	0.49	65.53	55.27

Property: Boiling Point measured in °C (Details..)

Data Set	R2	RMSE	MAE
NewBP118(118)	0.91	27.04	16.55
NewMP108(0)	NaN	NaN	NaN

SITE STRUCTURE

, FCO

- Description
 - General information
 - Synergism
 - Methodology
 - Training
 - Content and quality
 - · Schools
 - Structure
 - Dissemination
- REACH
- Contact
- Open Positions
 - Experienced Researcher
 - ✓ Long Term
 - QSAR/QSPR modeling
 - · Toxicity of nano-materials
 - Short Term

Open Positions

Marie Curie Initial Training Networks (ITN) are aimed at improving the career perspectives of European researchers who are in the first five years of their career by offering structured training in well defined scientific and technological areas as well as providing complementary skills and exposing the researchers to other sectors including private companies.

A number of open positions is available within two conceptual work packages listed below

The positions are available within two workpackages

- WP 1 Urgent problems of QSAR/QSPR modeling for REACH
- WP 2 Computational and in vitro screening methods for nano-materials

There are

one 1-year duration ER (Experienced Researchers, postdoc position) position,

still 2 of 11 Long Term Fellowships (LTF) (ESR positions, Early Stage Researcher, PhD positions), each one of 36 months duration, and

37 Short Term Fellowships (STF) (ESR positions), each one of 3-12 months duration.

Acknowledgements

Funding

GO-Bio BMBF <u>http://qspr.eu</u> Germany-Ukraine grant UKR 08/006 FP7 Marie Curie ITN ECO <u>http://eco-itn.eu</u> FP7 CADASTER <u>http://www.cadaster.eu</u> **Our group**

Iurii Sushko Sergii Novotarskyi Anil K. Pandey Robert Körner Stefan Brandmaier Matthias Rupp Wolfram Teetz Eva Schlosser

Collaborators: Dr. G. Poda (Pfizer) Dr. C. Ostermann (Nycomed) Dr. C. Höfer (DMPKore) Prof. A.S. Dimoglo (Turkey) Prof. A. Tropsha (NC, USA) Prof. T. Oprea (New Mexico, USA) Prof. A. Varnek (Strasbourg, France) Prof. R. Mannhold (Düsseldorf, Germany) Prof. R. Todeschini (Milano, Italy)

+ many other colleagues deen zündent