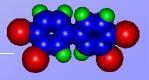
QSAR modelling of toxicity endpoints of emerging pollutants: Fragrances and Perfluorinated compounds


Barun Bhhatarai, Paola Gramatica, Mara Luini, Ester Papa

QSAR Research Unit in Environmental Chemistry and Ecotoxicology DBSF - University of Insubria, Varese – Italy

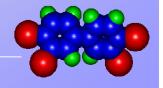
> e-mail: paola.gramatica@uninsubria.it ester.papa@uninsubria.it barun.bhhatarai@uninsubria.it mara.luini@uninsubria.it

http://www.qsar.it

FP7- EU project CADASTER

CAse studies on the Development and Application of in-Silico Techniques for Environmental hazard and Risk assessment

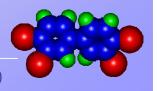
Willie Peijnenburg, RIVM, The Netherlands	Coordinator
Mojca Durjava, Public Health Institute Maribor, Slovenia	WP2 Leader Database Experimental Parameters/(Q)SARs Chem/Biol.Endpoints Generation of new data
Paola Gramatica, University of Insubria (Varese), Italy	WP3 Leader Development and validation of QSARs
Thomas Öberg, University of Kalmar, Sweden	WP4 Leader Integration of QSARs with risk assessment
Igor Tetko, HMGU, Germany	WP5 Leader QSPR-THESAURUS: Web site and standalone tools
Andreas Woldegiorgis, IVL, Sweden	
Nina Jeliazkova, IDEA, Bulgaria Mike Comber, MCC. Belgium	
Mark Huijbregts, RUN, The Netherlands	2


FP7- EU project CADASTER

4 classes of emerging pollutants studied: Flame retardants, <u>Fragrances, PFCs</u> and (benzo) Triazoles (REACH)

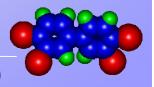
WP3: QSAR model development and validation

- DRAGON descriptors (from Hyperchem), selected by GA
- MLR models
- External Validation by a priori splitting of data (random and by SOM)
- Applicability Domain

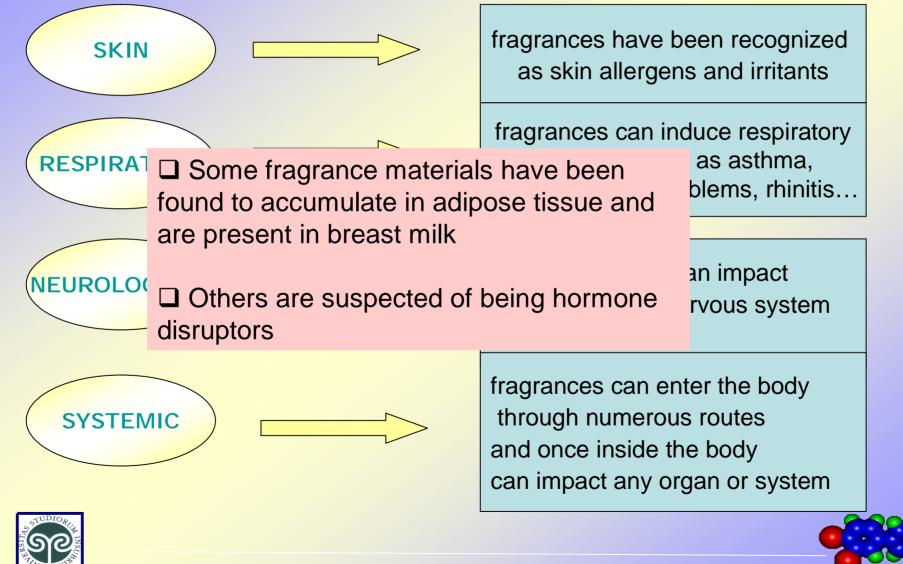


FRAGRANCES

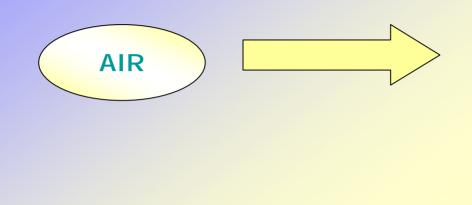
Mara Luini

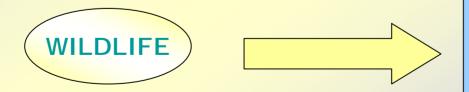

Prof. Paola Gramatica - QSAR Research Unit - DBSF - University of Insubria - Varese (Italy)

Introduction

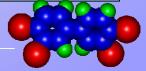

- Fragrances are used in a wide variety of consumer products such as creams, lotions, detergents, and various other personal and household products
- The low cost synthesis and increased resistance to light were the main reasons for their extensive use
- Human exposure to these agents is widespread and often involuntary
- Fragrances are believed to have possible toxic effects on humans
- Little is known about the environmental fate and toxicity
- => their potential effects on humans and aquatic ecosystems are not yet clearly understood

Need to use predictive **QSAR** approaches to fill this data gap and characterize the environmental and toxicological profiles of these compounds by minimizing animal tests




Health concerns

Environmental concerns



Fragrances are complex mixtures of volatile organic compounds (VOCs). Once in the air they can break down and form new compounds.

A large portion of fragrances ends up in wastewater, but most wastewater treatment methods do not remove them so they end up in streams and rivers from sewage treatment plans.

Musk compounds tend to accumulate and break down slowly; they persist in the aquatic environment and accumulate in the fatty tissue of aquatic wildlife.

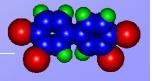
Data Sets

Toxicological properties

	Dataset	N° of available exp- data (→ modelled)	Bibliography	
	Log1/LD50 Oral mouse	24 → 23	D.R.Bickers et al. 2002 D.Belsito et al. 2007 ChemIDPlus	
Inhibition of mithocondrial NADH Ossidase complex in rat cells liver	LogEC50 NADH-Ossidase	20 → 18	D.E.Griffith et al. 2005	
	LogEC50 Aym (effect on membrane potential)	20 → 15	D.E.Griffith et al. 2005	
S ^{STUDI} ORU	hibition of mithocon embrane potential rat cells liver	drial		

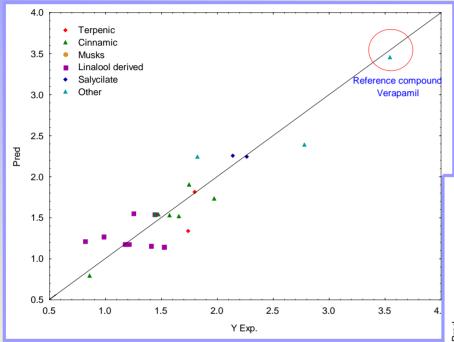
Results: models for toxicological endpoints

Toxicological Endpoints	Model	Train Obj.	Test Obj.	Variables	R ²	Q ² _{LOO}	Q ² _{BOOT}	Q ² _{EXT}	RMSE Train	RMSE Test	R ² - YScr
	Full Model	23	-	nR=Cs H-047	89	86.2	81	-	-	-	9.2
Log 1/LD50	Random	13	10		91.4	86.2	80.5	73.4	0.265	0.226	-
Oral Mouse	SOM	15	8		88.8	83.4	72.2	90.2	0.256	0.186	-
LogEC50	Full Model	15	-	ATS4v MATS2m	91.7	88.6	83.9	-	-	-	14.3
ΔΨm	Random	12	3		90.3	84.3	74.0	98.2	0.200	0.061	-
ΔΨm	SOM	13	2		90.9	85.8	78.8	97.3	0.193	0.070	_
	Full Model	20	-	nC R5u+	85.8	82.4	76.6	-	-	-	10.5
LogEC50 NADH-Ox	Random	16	4		84.4	79.7	73.3	89.1	0.321	0.320	-
	SOM	16	4		86.5	81.8	77.8	80.8	0.292	0.440	-


Focus on the following aspects of interest:

- VALIDATION
- APPLICABILITY DOMAIN

P. Gramatica, Principles of QSAR models validation: internal and external


QSAR Comb.Sci. 2007, 26(5), 694-701

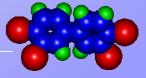
Prof. Paola Gramatica - QSAR Research Unit - DBSF - University of Insubria - Varese (Italy)

Model for Log1/LD50 oral mouse

Log1/LD50 Oral Mouse = 1.746 + 0.0705 H-047 – 0.4247 nR=Cs

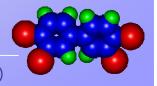
nR=Cs : it is among the functional group counts. It corresponds to number of aliphatic secondary C (sp2).

H-047: it is among the atom-centred fragments. It corresponds to H attached to C1(sp3)/C0 (sp2), linked (1) or not (0) to heteroatoms.


nR=Cs H-047 89.0 86.2 81.0 Applicability Domain 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0			Variables	\mathbb{R}^2 %	Q ² %	Q ² _{boot} %
4.0 • Terpenic • Cinnamic 3.5 • Musks • Linalool Derived • Salycilate 3.0 • Other 2.5 2.0 1.5 • Cinnamyl cinnamate				89.0	86.2	
 Terpenic Cinnamic Musks Linalool Derived Salycilate Other 2.5 2.0 1.5 1.5 1.0 • Cinnamyl cinnamate			Арр	licability	Domain	
 Cinnamic Musks Linalool Derived Salycilate Other 2.5 2.0 1.5 4 4 Cinnamyl cinnamate 		4.0	 Torponio 			
3.0 • Other		3.5	CinnamicMusksLinalool Derived			
2.0 1.5 1.0 Cinnamyl cinnamate		3.0			(R	eference Compound)
2.0 1.5 1.0 Cinnamyl cinnamate	-Pred	2.5	*			
1.0	×	2.0	£			
1.0		1.5		•	A Cincert	d einnemete
•		1.0	•		– Cinnamy	
			•	▲ ▲		
		0.5 0.	0 0.1 0.2		4 0.5	

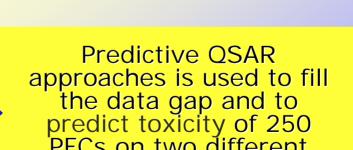
Conclusions on Fragrances

- Limited availability of experimental data useful for QSAR (in particular SIDS endpoints for CADASTER project).
 - •New QSAR and QSPR models have been developed for the prediction of 3 toxicological endpoints:
 - acute oral mouse toxicity, and 2 endpoints related to mitochondrial toxicity
 - •Despite the limited amount of available data, all the models where carefully internally and externally validated.
 - At our knowledge, no other QSAR models are available


in literature for these endpoints.

PERFLUORINATED COMPOUNDS

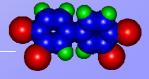
Barun Bhhatarai, PhD



Prof. Paola Gramatica - QSAR Research Unit - DBSF - University of Insubria - Varese (Italy)

Introduction

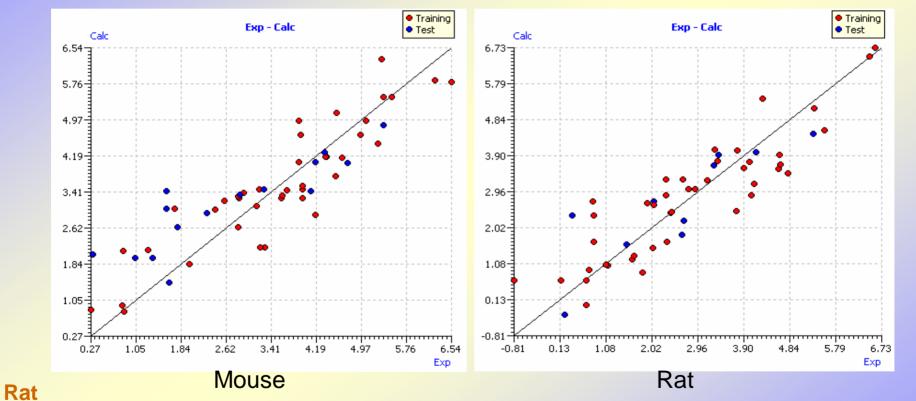
- Perfluorinated compounds (PFCs) are chemicals containing a long fluorinated carbon tail attached to different functional groups
- PFCs as perfluoro-octanesulfonate (PFOS), perfluoro-octanoate (PFOA) and perfluoro- octane sulfonylamide (PFOSA) are stable chemicals with a wide range of industrial and consumer applications [Inoue 2004]
- Degradable products of commercial PFCs are found in environment and biota and diPAPs (a group of PFCs used on food wrappers) was recently reported in human blood [*Renner 2009*]
- PFCs are considered emerging pollutants and are believed to have potential toxic effects in humans and wildlife
- PFCs along with Polyfluoro compounds are studied for LC₅₀ inhalation toxicity of Mouse and Rat


PFCs on two different species viz. Mouse and Rat

 $R = \{H,F\} X = \{-H, -OH, -SO_2, -COOH, ...\} X = \{-F, -H, -OH, -alkyl, -aryal, -halo, -nitro, ...\} R = 1,2,3...$

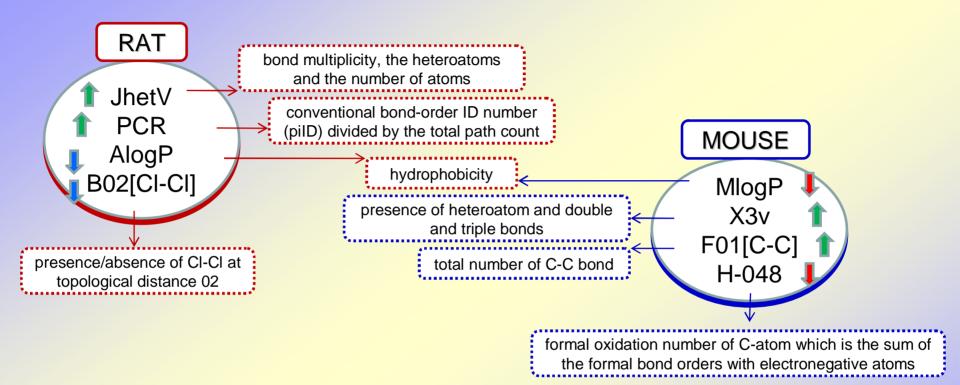
Results: QSAR models for LC₅₀ inhalation

	Splitting	Compounds	Variables selected	R² (%)	Q ² _{LOO}	Q ² BOOT	Q ² ext	R ² -Y _{Scrm}
Mouse Inhalation	SOM 28.5%	Train: 40 Test: 16	X3v;	83.0	78.1	75.5	71.6	10.3
50	Random by Activity 20%	Train: 44 Test: 12	H-048; MLOGP; F01[C-C]	77.1	71.7	69.9	85.1	9.0
	Full model			79.8	76.3	75.4	-	7.0
Rat Inhalation	SOM 18.87%	Train: 42 Test: 10	Jhetv:	79.4	73.9	71.9	72.5	9.6
52 compounds	Activity 20%	Train: 42 Test: 10	PCR; ALOGP; B02[CI-CI]	79.8	74.7	73.4	70.3	10.6
	Full model			78.5	74.2	73.3	-	7.6

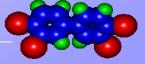


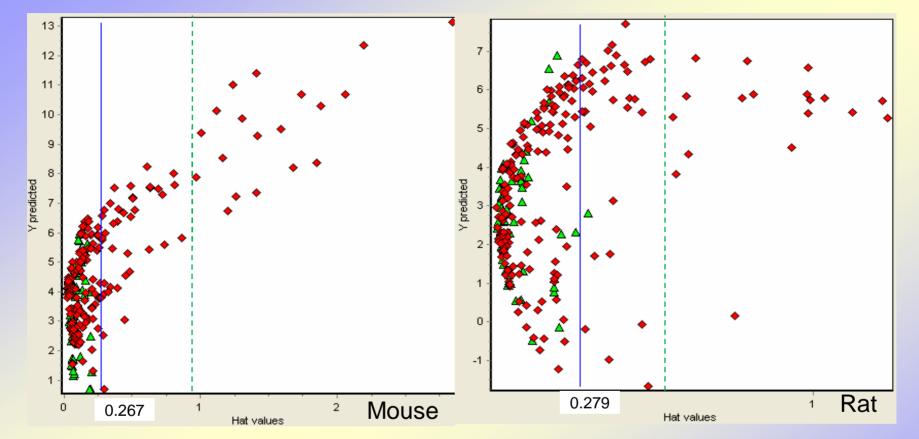
Regression plots for the models on datasets split by SOM

Mouse

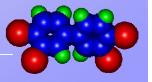

log 1/LC₅₀ = 4.21 – 1.27 (±0.31) MlogP + 1.43 (±0.46) X3v + 0.38 (±0.13) F01[C-C] – 1.14 (±0.37) H-048 n=56, s=0.72, r²=79.83, *F*=50.5, *Kx*=42.34, *Kxy*=50.40

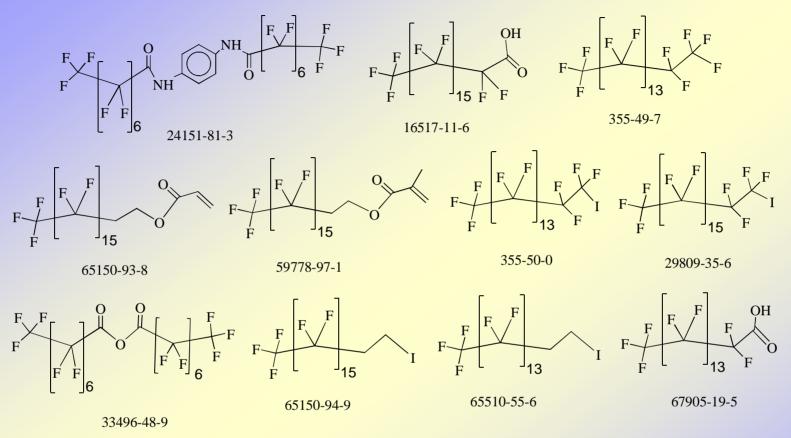
 $\frac{\log 1/LC_{50} = -11.14 + 2.09 (\pm 0.43) \text{ Jhetv} + 9.57 (\pm 2.31) \text{ PCR} - 0.66 (\pm 0.26) \text{ AlogP} - 1.58 (\pm 0.80) \text{ B02[CI-CI]}}{n=52, s=0.82, r^2=78.53, F=42.98, Kx=25.36, Kxy=34.92}$

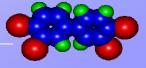

Descriptor analysis


- Common descriptor characterizing Hydrophobicity was negative for both species MlogP vs AlogP = 0.847
- JhetV and X3v have similar chemical meanings and are positive for both species JhetV vs X3v r= 0.780

•B02[CI-CI] present for 5 of 52 compounds – fitting (?) descriptor to include all Freons

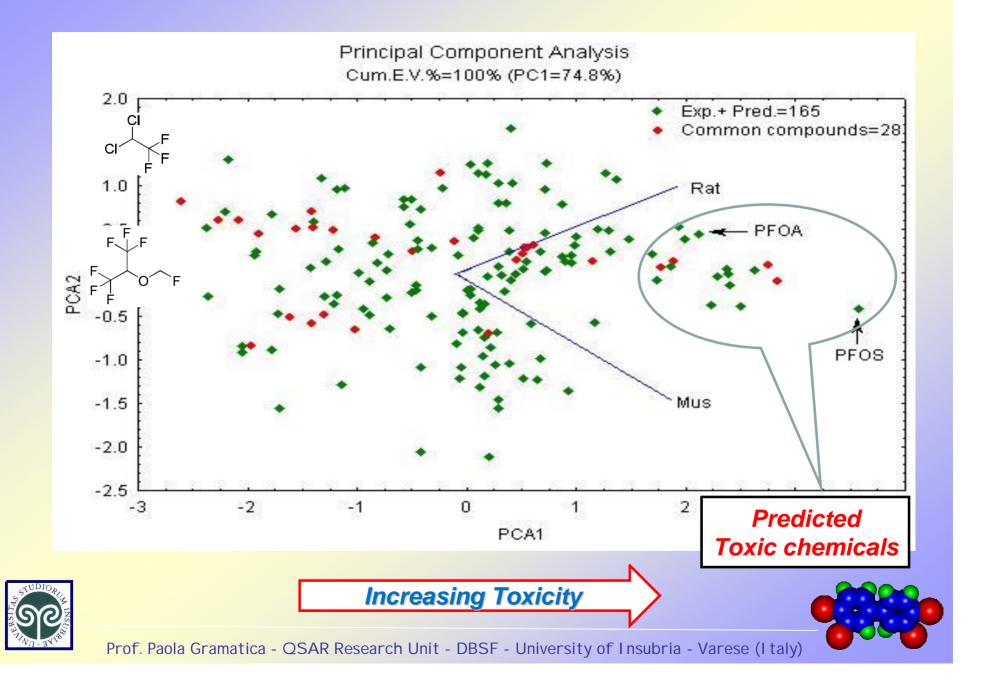

Applicability Domain (AD) study on 250 PFCs


- 61 compounds are out of domain in Mouse model (75.6% coverage of PFCs) and 53 in Rat model (78.8% coverage).
- •Arbitrary cutoff at 1.0 for Mouse and 0.5 for Rat (green lines):

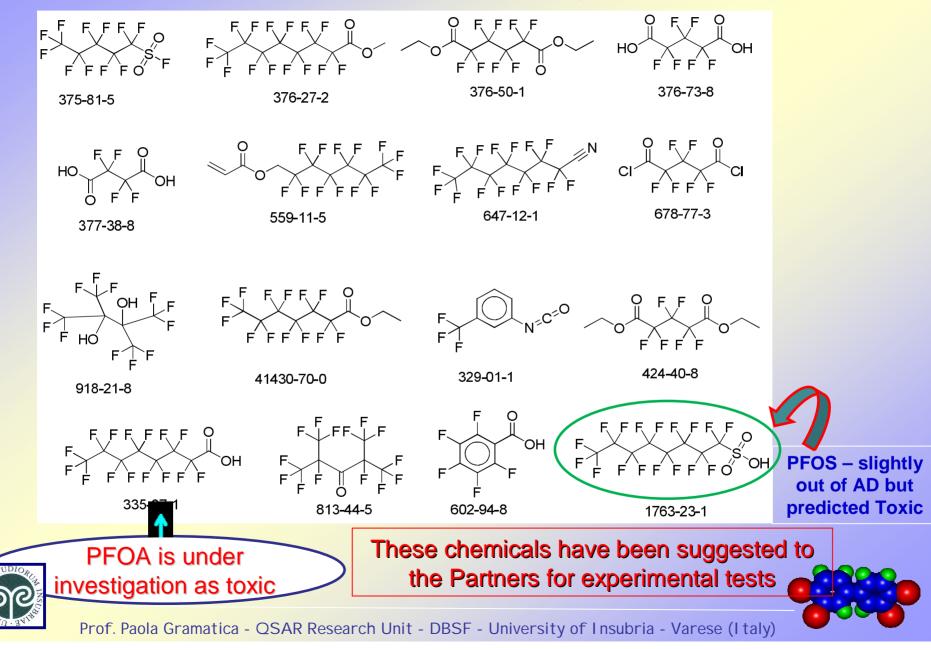


Focus on AD: Common Out-of-domain compounds

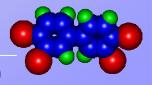
- Predicted compounds out of applicability domain of both Mouse and Rat model are long chain PFCs (>15-Carbon)
- They are probably extrapolated as the longest compounds in the training sets are with 7-Carbon


Toxicity Trend

Principal Component Analysis


Cum. E.V.=100% (PC1=90.4%)

Toxicity Trend



This study has been financially supported by the FP7th-EU Project CADASTER (n. 212668)

Thanks for your attention http://www.qsar.it

Prof. Paola Gramatica - QSAR Research Unit - DBSF - University of Insubria - Varese (Italy)