

QSAR modelling of the endocrine disrupting activity of Brominated Flame Retardants (BFRs)

Ester Papa, Simona Kovarich and Paola Gramatica

QSAR Research Unit in Environmental Chemistry and Ecotoxicology – DBSF- University of Insubria (Varese, Italy) Web: http://www.dipbsf.uninsubria.it/gsar/; www.gsar.it

INTRODUCTION

In the last decade, brominated flame retardants (BFRs), and in particular polybrominated diphenyl ethers (PBDEs), have been recognised as an emerging class of persistent organic pollutants. Endocrine disrupting (ED) effects, especially on thyroid and sexrelated hormones, have been observed for some BFR congeners. In the REACH legislation the crucial step of Authorisation is mandatory for chemicals with PBT and ED behaviour: the identification of safer alternatives to these chemicals is required.

e-mail: ester.papa@uninsubria.it; paola.gramatica@uninsubria.it

Unfortunately, the available amount of experimental data is very small and is mainly related to already banned BFRs. According to REACH there is urgent need to maximize the value of existing data, also by using them to predict unknown activities for existing or even not yet synthesized chemicals. The development of QSAR models is among the successful strategies which can meet these needs.

The aim of this study was to develop QSAR models for the prediction of T4-TTR competing potency and E2SULT inhibition potency of BFRs, which are linked to endocrine disruption activity. Two approaches are here proposed: multiple linear regression, by Ordinary Least Squares (OLS), and classification, by K-NN method.

Endpo	oint	N _{TR}	N _p [2]	Vari	iables R ²	% Q2	% Q	2 ₈₀₀₁ %	R ² _{YS} %	Q ² _{EXT} %		CRITERIA
LogT4-RE	P	12	5		W4 96			36.96	17.45	89.1 THE	OLD MODELS	Response IC ₅₀ > 10 μ
LogE2SUL	T-REP	16	5	GA	TS1v IC-01 82	.71 78	s.46 é	57.85	13.39	95.12		1.0 μM < IC 0.1 μM < IC
	3. 3. 8.		•	4-bromo Training Predictic Other B	on set		Training set Prediction s		500	1-8DE-47	BDE-47	0.01 µM < 1 14-TTR comp Vari DISPv NER (non-err Asymmetrical congeners
licability Dor Analysis	nain h [*] .= 0.	75 _{1.5} Hat values	20	25 3		-2.5	-2.0	-1.5 -1.0	-o.s o. Y-Exp	ilable da	10 13	
ndpoint	Мос	Model		N _P	Variable		Q ² LOO			0.0000000	AD% (238)	ASIO 8
4-REP	Full Model Split 30%		17 12	- 5	MATS6v apmax	95.20 94.74	92.96 90.18	92.86 89.72	13.42		98.74	
2SULT-REP	REP Full Model Split 30%		21 15	- 6	GGI7 B08[C-O	87.57 88.94		81.96 83.80			100	Symmetrical congeners
NCLUSION	IS	destectestoote	etectectootoo	lostostostos	testectestestestesteste	schooloophooloochool	oskoskoskoskoskosk		ochochochochochoc	teeteeteeteeteeteeteete		
docrine dis dels have ESSION MC availabilit dation of dictive por v models formances tost all the	been de DDELS y of new the pre wer. have be	w toxic viously een de	city d v dev evelor g and	ata f elopo oed u pred	ling to OE or some I ed mode using all t liction) ar	CD prind nydroxik Is, whic he avai	ciples (ated PB h confi lable d	6]. DEs [2] rmed ti ata [1,2	allowed neir rob]: th e n	d for the oustness	external and real how high	tuineuting to the second secon

MATERIALS and METHODS

DATA SET The experimental data related to endocrine disruption potencies of BFRs were available for several PBDE and OH-BDE congeners, TBBPA (tetrabromobisphenol-A), TBBPA-DBPE (tetrabromobisphenol-A-bis(2,3)dibromopropyl ether), 246-TBP (2,4,6tribromophenol) and HBCD (hexabromocyclododecane) [1-2].

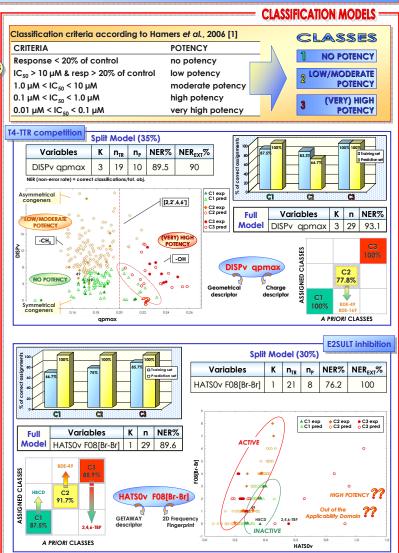
Regression endpoints: T4-TTR relative competing potencies (T4-REP = IC₅₀T4-TTR_{T4}/IC₅₀T4-TTR_{BFR}) and estradiol sulforransferase relative inhibiting potencies (E2SULT-REP = IC₅₀E2SULT_{PCP}/IC₅₀E2SULT_{BRP}). All the responses, reported in μ M, have been converted into logarithmic units.

Classification: 3 classes (C1=no potency; C2=low/moderate potency; C3=(very) high potency) selected according to Hamers et al. [1].

MOLECULAR DESCRIPTORS The input files for descriptor calculation, containing information relative to the minimum energy conformation of the molecule, were obtained by the Semi-empirical method AM1 in HYPERCHEM [3], 483 molecular descriptors (0D; 1D; 2D; 3D) were then calculated by the software DRAGON [4].

REGRESSION MODELS Multiple linear regression was performed by Ordinary Least Squares regression (OLS) method and All Subset Selection method was applied to select the best variables and models [5].

CLASSIFICATION MODELS K-NN method was applied to model the three classes of ED potency [6]. The selection of the best subset of variables has been realised by the All Subset Selection method.


SPLITTING TECHNIQUE Prediction set selection was carried out by Random through activity sampling.

TOOLS OF VALIDATION AND DIAGNOSTICS

Models were developed taking into account the recently proposed OECD principles for QSAR validation [7].

- Internal (by Q²_{LOO} and Q²_{BOOT}, Y-scrambling) and external validation (verified by Q²_{EXT}) [8].
- Check of the quality of the best models by Residuals and Williams plot.

• Applicability Domain (AD% for 238 BFRs) verified by leverage approach (regression models) or by descriptor's range (classification models).

Financial support, given by European Union through the project CADASTER (FP7-ENV-2007-1-212668), is gratefully acknowledged.

SCAN Soft

Hamers T. et al., 2006. Tox.Sci., 92, 157-173; Hamers T. et al., 2008. Mol. Nutr. Food. Res. 52, 284-298;

to predict the level of endocrine disruption potency of BFRs.

behaviour was not observed for E2SULT inhibition.

Hamers I. et al., 2008. Mol. NUIT. Hood. Nets. 52, 284-298; HYPERCHEM. Rel. 7.03 for Windows, 2002. Hypercube, Inc. Florida, USA; Talete srl., 2007. DRAGON – Software for Molecular Descriptors Calculations, Todeschini R., 2001. MOBY DIGS. Rel. 2.3 for Windows, Talete srl, Milan (Italy); ns, ver. 5.5 for Windows; http://www.talete.mi.it/

The presence of Br substituents in [2,2',6,6'] seems to increase T4-TTR competition. The same

In REACH context, classification models here proposed represent an important and simple tool

- SCAN Software for Chemometric Analysis, 1995, ver. 1.1 for Windows, Minitab (USA); Available online dt: http://www.oecd.org/document/32/ (accessed April 2009); Granatice P., 2007. GSAR Comb. Sci. 28, 644-701; Papa E., Kovarich S., Gramatica P. Poster presented at SETAC Europe 18th Annual Meeting, 25-29 May 2008, Warsaw, Poland; Liu H. et al., 2007. J. M.G. Cargot, Model. 28, 135-144.