QSAR prediction of endocrine disruption potencies of brominated flame retardants

Ester Papa, Simona Kovarich and Paola Gramatica

QSAR Research Unit in Environmental Chemistry and Ecotoxicology – DBSF- University of Insubria (Varese, Italy) Web: http://www.dipbsf.uninsubria.it/qsar/; www.qsar.it e-mail: ester.papa@uninsubria.it; paola.gramatica@uninsubria.it

ABSTRACT

In the last decade, brominated flame retardants (BFRs) became an emerging class of POPs. Because of their chemical similarity with other classes of organohalogenated compounds, such as PCBs and dioxins, these compounds can act as endocrine disruptors. In this study, QSAR models were developed on different responses related to endocrine disruption potency of some BFRs, in particular polybrominated diphenyl ethers (PBDEs). The multiple linear regression (MLR) approach was applied, in combination with the Genetic Algorithm variable selection procedure, to a variety of theoretical molecular descriptors representing the molecular structures. The best models were internally validated for their performance using the leave-one-out (Q2loo=72-91%) procedure and scrambling of the responses. External validation was provided, when possible, by splitting the data sets in training and test sets (range of Q2ext=80-94%), which confirmed the predictive ability of the models.

This topic is included in the FP7- EU Project CADASTER under negotiation.

MATERIALS and METHODS

DATA SET The experimental data related to endocrine disruption potencies of BFRs were taken from the literature [1, 2, 3]. The selected responses included Ah Receptor Binding Affinities (RBA), EROD induction potencies ($EC_{50}ERODind$), Ah Receptor, Estrogen Receptor and Progesterone Receptor interaction potencies as agonist or antagonist (EC₅₀DRag, EC₅₀ERag, IC₅₀PRant), T4-TTR competing potencies (IC₅₀T4-TTR) and estradiol sulfotransferase inhibiting potencies (IC_{s0}E2SULT). All the responces, reported in μ M, have been transformed to logarithmic units and, if necessary, multiplied by -1 to obtain positive values. The experimental data set, very restricted in most of the cases, was formed by some PBDE congeners and other BFRs (i.e. BPA, TBBPA, HBCD).

➡ 615 molecular descriptors (0D; 1D; 2D; 3D) were calculated by the software DRAGON [4].

🛋 4 quantum-chemical descriptors (Highest Occupied Molecular Orbital (HOMO), Lowest

Unoccupied Molecular Orbital (LUMO), HOMO-LUMO gap (DHL) and the ionisation potential (P

ion)) were calculated by the semi empirical PM3 Hamiltonian for the geometry optimisation

MULTIPLE LINEAR REGRESSION MODELS and Variable Selection were performed by Ordinary Least Squares regression (OLS) method [6]. **EXTERNAL VALIDATION**

Prediction set selection based on the molecular structure (by Kohonen Maps - Artificial Neural Networks (K-ANN) [7]) or using the Random by response approach.

TOOLS OF VALIDATION AND DIAGNOSTICS

Models were developed taking into account the recently proposed OECD principles for OSAR validation [8].

• Internal (by Q²_{LOO} and Q²_{LMO} Y-scrambling) and external validation (verified by Q²ext).

Check of the quality of the best models by Residuals and Williams plot Applicability Domain (AD% for 223 BFRs) verified by leverage approach.

RESULTS

MOLECULAR DESCRIPTORS

method available in the HYPERCHEM package [5].

-LogRI	8A = 0.80 + 0	0.45 RDF0	35 v -	1.01 RDF08	V	End	point	Models	Training obj.	Pred obj.	Variable	s	R ²	Q ² _{L00}	Q ² _{BOOT}	Q ² _{EXT}	RMSE	AD% (223)	
5.0				BDE-153				Full Model	18	-			86.13	79.34	79.75	-	0.34	89.69	
	mono/diBDE					Log1/RB/	٩)	Rando		.5 3	RDF035v RD	F080v	86.51	78.28	77.93	74.65	-	-	
4.5	 tri/tetraBDE penta/hexaBDE 		BDE-10	°/ //	$\left(\left(\left$	\sim		K-A	IN 1	.5 3			84.71	75.30	73.81	93.50	-	-	
	 hepta/octaBDE 		BDE-19	BDE-154		Log1/EC ₅	_o ERODin	d Full Model	8	-	HATS5e		86.97	79.92	81.82	-	0.33	94.17	
4.0			TO BDE 3			Log1/EC ₅	_o DRag	Full Model	8	-	Mor29u		83.19	71.89	72.93	-	0.38	76.68	
8						LogEC ₅₀ E	Rag-1	Full Model	8	-	Mor19u		90.91	83.03	83.53	-	0.10	85.20	
5 3.5		BDE 19 BDE-15 BDE-1	17			LogEC ₅₀ E	Rag-2	Full Model	7	-	RDF075	J.	95.37	90.88	91.64	-	0.04	78.48	
3.0 State	BDE 128	8DE-28 80 BDE-47			Classification of BFRs based on predicted toxicity results (according to Hamers et al., 2006 [2]):														
2.5						Criteria Potency						3	 mono/diBDE 		1	24.6	FBP		
25 BOE BOE BEE THIGHER AHR					$\angle / / $	Log1/E(I)C50 < -1 no/low potency -1 < Log1/E(I)C50 < 0 moderate potency						potency							
2.0	animity												 hepta/octaB nona/decaB 						
						0 < Log1/E(I)C50 < +1 high potency						1 2	 BFRs 						
									nian por			2						TBEPA	
	20 25	20 25						-		-		Very						TBERA	
1.5	2.0 2.5	3.0 3.5 Experimental -LogRBA	4.0	4.5 5.0			E(I)C50	-	very hig	-	<u>у</u>	T4			only high	,,		TBERA	
1.5	2.0 2.5		4.0	4.5 5.0				-		-		Area T4 1			T4-TTR com. p	ootency		TBEPA THEBPA DIEBPA	
Endpoint	2.0 2.5 Models		4.0 Pred obj.	4.5 5.0 Variables	R ²			-	very hig	h potency		Annu the second			T4-TTR com. p	BDE T4-Ike (H-BD 	SIDE 47 ME	TriBBRA	
		Experimental -LogRBA	Pred		R ² 83.45	Log1/	E(I)C50) > +1	very hig	-	-T	fran T4 1 0 0 0 12	*	•	T4-TTR com. p	BDE T4-Ike (H-BD 	TRADALORDE	DBBPA BBPA	
	Models Full Model	Experimental -LogRBA	Pred			Log1/ Q ² LOO	e(I)C50	0 > +1 Q ² _{EXT} RMS	AD% (223)	E2SUL Inhibition vs	T n Pot.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•		T4-TTR com. p	BDE T4 Ike CH-BD T2-Ike CH-BD 60H-BDE 60H-BDE	твера-овре	DEBPA	
Endpoint	Models Full Model	Experimental -LogRBA Training obj. 19	Pred obj.	Variables	83.45	Log1/ Q ² LOO 76.85	E(I)C5(Q² _{BOOT} 73.39 74.39	Q²_{EXT} RMS - 0.18	AD% (223)	E2SUL Inhibition	T n Pot.	Alan T4 Subject to potence 1 1 1 1 1 1 1 1 1 1 1 1 1	*		T4-TTR com, r	botency BDE THE WE CHER Like CHER 2014-BDE ROTH-BDE BPA	твера-овре	Tribopa Deppa	
Endpoint	Models Full Model Random K-ANN	Experimental LogRBA Training obj. 19 16	Pred obj.	Variables	83.45 85.18	Log1/ Q² _{Loo} 76.85 78.19	E(I)C5(Q² _{BOOT} 73.39 74.39	Q ² _{EXT} RMS - 0.18 61.19 -	AD% (223)	E2SUL Inhibition vs T4-TT	T n Pot.	Alan 14 1 Acute boleurs high potente	*	*	T4-TTR com, r	tency	TBBPA-DBPE E2SUI	Tribopa Deppa	

CONCLUSIONS

Different QSAR models for prediction of endocrine disrupting potencies of BFRs, particularly PBDE, are proposed, and AD was verified for 223 BFRs.

> Despite the limited amount of experimental data available, the developed models have good predictive power, and were verified by internal and, when possible, external validations.

> According to RBA experimental data [1], all predicted RBA values show weaker AhR affinity than the reference toxicant TCDD (< 2-5 orders of magnitude).

> Predicted EROD induction potencies result higher for planar compounds than for those non planar (with two or more ortho-bromines).

> T4-TTR competing potency seems greater for highly brominated diphenyl ethers (hepta-nonaBDEs), as well as for diBDEs, and for all the other BFRs, specially 2,4,6-TBP and TBBPA, whose TTR-binding potency exceeds that of the natural ligand T4.

> E2SULT inhibition potency appears moderate for almost all PBDEs (except mono-diBDEs) and high to very high for the other BFRs, particularly M/Di/Tri/TBBPA. These BFRs are more potent than the well-known inhibitor pentachlorophenol (PCP).

According to the literature [2], a correlation was found between T4-TTR competing potency and E2SULT inhibition. In agreement with this, our models predicted a moderate and high toxicity respectively for highly brominated BDE congeners and BFRs with hydroxylated aromatic group.

Not enough experimental data are available to identify a quantitative relationship between bromination degree, or the bromine position, and BFRs' interaction with Ahryl, Estrogen and Progesterone receptors (DR agonism, ER agonism, PR antagonism).

> The variability of interactions of the studied chemicals with different hormone receptors and hormonal systems prevented us from defining a general ranking based on their ED potency.

REFERENCES

REFERENCES (1) Chen, G. et al., 2001. Environ.Sci.Technol., 35, 3749-3756; (2) Hamers, T. et al., 2006. Tox.Sci., 92, 157-173; (3) Meerts, LA.T.M. et al., 2001. Environ. Health perspect., 109, 399-407; (4) Todeschini R., Consonni V. and Pavan M., **2001**. DRAGON – Software for the calculation of molecular descriptors, rel. 1.12 for Windows. Free download available at http://www.disat.unimib/chm;

- (5) HYPERCHEM. Relea se 7.03 for Windows, 2002. Hypercube, Inc. Florida, USA;
- (6) Todeschini, R., 2001. Moby Digs Software for multilarea regression analysis and variable subset selection by Geneitc. Algorithm, rel. 2.3 for Windows, Talete srl, Milan (Italy);
 (7) J. Zupan, M. Novic, I. Rusischetz. Chemom. Int. Lab. Syst., 38, 1 (1997);
 (8) Available online at: http://www.oecd.org/document/23/ (accessed March 2008)