HelmholtzZentrum münchen German Research Center for Environmental Health

Large Scale Evaluation of log *P* Prediction Methods: Local Corrections Compensate Insufficient Accuracy and Eliminate the Need of Testing Every Other Compound

Gennadiy Poda,¹ Claude Ostermann,² Raimund Mannhold,³ Joseph McDonald,¹ Igor V. Tetko⁴

1-Structural & Computational Chemistry, Pfizer Global R & D, Chesterfield, MO 63017;
2-Nycomed GmbH, Germany;
3-Heinrich-Heine-Universität, Düsseldorf, Germany;
4-Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Institute of Bioinformatics & Systems Biology

ACS National Meeting, Washington DC, 18 August 2009

Declining R&D productivity in the pharmaceutical industry

http://www.frost.com/prod/servlet/market-insight-top.pag?docid=128394740

Source : PhRMA 2007, FDA

HelmholtzZentrum münchen

German Research Center for Environmental Health

Pharma R&D Cost and productivity: Reasons for compound failure

Pharmacokinetics
 Animal toxicity
 Adverse effects
 Lack of efficacy
 Commercial reasons
 Miscellaneous

TOP four reasons are connected to compound Absorption, **D**istribution, **M**etabolism and **E**xcretion, all of which may contribute to lack of efficacy and **T**oxicity: **ADME/T** issues

Solutions: in vitro tests? In vivo animal tests? Costs... Time...

What is about in silico??? Not accurate enough? Or incorrectly interpreted...

HelmholtzZentrum münchen German Research Center for Environmental Health

"One can not embrace the unembraceable."

Possible: $10^{60} - 10^{100}$ molecules theoretically exist (> 10^{80} atoms in the Universe)

Achievable: $10^{20} - 10^{24}$ can be synthesized now by companies (weight of the Moon is ca 10^{23} kg)

Available: 2*10⁷ molecules are on the market

Measured: 10² - 10⁴ molecules with ADME/T data

Problem: To predict ADME/T properties of just molecules on the market we must extrapolate data from one to 1,000 - 100,000 molecules!

There is a need for methods which can estimate the accuracy of predictions!

HelmholtzZentrum münchen German Research Center for Environmental Health

Kozma Prutkov

Existing Dogma

- Prediction of physico-chemical properties, in particular log P, is simple
- There is no need to measure them
- We have enough number of good computational methods

• Is this true?

Performance of algorithms for the public dataset

Mathad		Star s	et (N = 2	23)	Non-Star set (<i>N</i> = 43)							
wethod	% within error range						% within error range					
	RMSE	rank	<0.5	0.5-1	· >1	RMSE	rank	<0.5	0.5-1	>1		
AB/LogP	0.41	·	84	12	4	1.00		42	23	35		
S+logP	0.45	1	76	22	3	0.87	- I	40	35	26		
ACD/logP	0.50	1	75	17	7	1.00	- I	44	33	23		
Consensus log P	0.50		74	18	8	0.80		47	28	26		
CLOGP	0.52	II	74	20	6	0.91	- I	47	28	26		
VLOGP OPS	0.52	II	64	21	7	1.07	- I	33	28	26		
ALOGPS	0.53	II	71	23	6	0.82	- I	42	30	28		
MiLogP	0.57	II	69	22	9	0.86	- I	49	30	21		
XLOGP	0.62	11	60	30	10	0.89	- I -	47	23	30		
KowWIN	0.64	Ш	68	21	11	1.05	- I -	40	30	30		
CSlogP	0.65	Ш	66	22	12	0.93	- I -	58	19	23		
ALOGP (Dragon)	0.69	Ш	60	25	16	0.92	- I -	28	40	33		
MolLogP	0.69	Ш	61	25	14	0.93	- I -	40	35	26		
ALOGP98	0.70	Ш	61	26	13	1.00	1	30	37	33		
OsirisP	0.71	Ш	59	26	16	0.94	1	42	26	33		
VLOGP	0.72	Ш	65	22	14	1.13	1	40	28	33		
TLOGP	0.74	Ш	67	16	13	1.12	1	30	37	30		
ABSOLV	0.75	II	53	30	17	1.02	- I	49	28	23		
QikProp	0.77	Ш	53	30	17	1.24	Ш	40	26	35		
QuantlogP	0.80	Ш	47	30	22	1.17	Ш	35	26	40		
SLIPPER-2002	0.80	Ш	62	22	15	1.16	Ш	35	23	42		
COSMOFrag	0.84	II	48	26	19	1.23	Ш	26	40	33		
XLOGP2	0.87	Ш	57	22	20	1.16	Ш	35	23	42		
QLOGP	0.96	II	48	26	25	1.42	Ш	21	26	53		
VEGA	1.04	II	47	27	26	1.24	Ш	28	30	42		
CLIP	1.05	II	41	25	30	1.54	III	33	9	49		
LSER	1.07	Ш	44	26	30	1.26	Ш	35	16	49		
MLOGP (Sim+)	1.26	Ш	38	30	33	1.56	III	26	28	47		
NC+NHET	1.35	III	29	26	45	1.71	- 111	19	16	65		
SPARC	1.36	III	45	22	32	1.70	III	28	21	49		
MLOGP(Dragon)	1.52	III	39	26	35	2.45	Ш	23	30	47		
LSER UFZ	1.60	III	36	23	41	2.79	Ш	19	12	67		
AAM	1.62		22	24	53	2.10		19	28	53		
VLOGP-NOPS	1.76	III	1	1	7	1.39	III	7	0	7		
HINT	1.80	Ш	34	22	44	2.72	Ш	30	5	65		
GBLOGP	1.98	III	32	26	42	1.75		19	16	65		

Mannhold, Poda, Ostermann, Tetko, *J. Pharm. Sci.,* 2009, 98(3), 861-893

Background models

Arithmetic Average Model (AAM):

mean log*P*, used as model predicting the same value for all dataset molecules

- **Rank III:** models with root mean squared errors (*RMSE*) close to or larger than that of AAM, **i.e.** models are non-predictive
- **Rank I:** methods with *RMSE* identical or close to AB/LogP and ALOGPS **Rank II:** remaining models
- **NC+NHET:** log P = 1.46 + 0.11 (NC NHET) N=95 809, RMSE=1.04, R²=0.2

Consensus logP: average of predicted log*P* from all rank I and II methods

Performance of algorithms for the public dataset

Mathad		Star s	et (N = 2	23)	Non-Star set (<i>N</i> = 43)							
wethod	% within error range						% within error range					
	RMSE	rank	<0.5	0.5-1	· >1	RMSE	rank	<0.5	0.5-1	>1		
AB/LogP	0.41	·	84	12	4	1.00		42	23	35		
S+logP	0.45	1	76	22	3	0.87	- I	40	35	26		
ACD/logP	0.50	1	75	17	7	1.00	- I	44	33	23		
Consensus log P	0.50		74	18	8	0.80		47	28	26		
CLOGP	0.52	II	74	20	6	0.91	- I	47	28	26		
VLOGP OPS	0.52	II	64	21	7	1.07	- I	33	28	26		
ALOGPS	0.53	II	71	23	6	0.82	- I	42	30	28		
MiLogP	0.57	II	69	22	9	0.86	- I	49	30	21		
XLOGP	0.62	11	60	30	10	0.89	- I -	47	23	30		
KowWIN	0.64	Ш	68	21	11	1.05	- I -	40	30	30		
CSlogP	0.65	Ш	66	22	12	0.93	- I -	58	19	23		
ALOGP (Dragon)	0.69	Ш	60	25	16	0.92	- I -	28	40	33		
MolLogP	0.69	Ш	61	25	14	0.93	- I -	40	35	26		
ALOGP98	0.70	Ш	61	26	13	1.00	1	30	37	33		
OsirisP	0.71	Ш	59	26	16	0.94	1	42	26	33		
VLOGP	0.72	Ш	65	22	14	1.13	1	40	28	33		
TLOGP	0.74	Ш	67	16	13	1.12	1	30	37	30		
ABSOLV	0.75	II	53	30	17	1.02	- I	49	28	23		
QikProp	0.77	Ш	53	30	17	1.24	Ш	40	26	35		
QuantlogP	0.80	Ш	47	30	22	1.17	Ш	35	26	40		
SLIPPER-2002	0.80	Ш	62	22	15	1.16	II	35	23	42		
COSMOFrag	0.84	II	48	26	19	1.23	Ш	26	40	33		
XLOGP2	0.87	Ш	57	22	20	1.16	II	35	23	42		
QLOGP	0.96	II	48	26	25	1.42	Ш	21	26	53		
VEGA	1.04	II	47	27	26	1.24	Ш	28	30	42		
CLIP	1.05	II	41	25	30	1.54	III	33	9	49		
LSER	1.07	Ш	44	26	30	1.26	II	35	16	49		
MLOGP (Sim+)	1.26	Ш	38	30	33	1.56	III	26	28	47		
NC+NHET	1.35	III	29	26	45	1.71	- 111	19	16	65		
SPARC	1.36	III	45	22	32	1.70	III	28	21	49		
MLOGP(Dragon)	1.52	III	39	26	35	2.45	Ш	23	30	47		
LSER UFZ	1.60	III	36	23	41	2.79	Ш	19	12	67		
AAM	1.62		22	24	53	2.10		19	28	53		
VLOGP-NOPS	1.76	III	1	1	7	1.39	III	7	0	7		
HINT	1.80	Ш	34	22	44	2.72	Ш	30	5	65		
GBLOGP	1.98	III	32	26	42	1.75		19	16	65		

Mannhold, Poda, Ostermann, Tetko, *J. Pharm. Sci.,* 2009, 98(3), 861-893

Performance of algorithms for *in-house* datasets

		Pfizer set (<i>N</i> = 95 809)								Nycomed set (N = 882)					
		RMSE	Failed ¹	rank	% in (error ra	ange >1	RMSE, zwitterions	RMSE	rank	% in	error ra	ange >1		
,	Method		-	-	.0.0	1		excluded ²		-	.0.0	1			
	Consensus log P	0.95			48	29	24	0.94	0.58		61	32	7		
	ALOGPS	1.02		I.	41	30	29	1.01	0.68	I.	51	34	15		
	S+logP	1.02		1	44	29	27	1.00	0.69		58	27	15		
	NC+NHET	1.04			38	30	32	1.04	0.88	Ш	42	32	26		
	MLOGP(S+)	1.05		II	40	29	31	1.05	1.17	III	32	26	41		
1	XLOGP3	1.07		II	43	28	29	1.06	0.65	- I	55	34	12		
/	MiLogP	1.10	27	II	41	28	30	1.09	0.67	Т	60	26	14		
/	AB/LogP	1.12	24	II	39	29	33	1.11	0.88	III	45	28	27		
	ALOGP	1.12		II	39	29	32	1.12	0.72	II	52	33	15		
	ALOGP98	1.12		II	40	28	32	1.10	0.73	II	52	31	17		
	OsirisP	1.13	6	II	39	28	33	1.12	0.85	II	43	33	24		
	AAM	1.16		Ш	33	29	38	1.16	0.94	Ш	42	31	27		
	CLOGP	1.23		III	37	28	35	1.21	1.01	III	46	28	22		
	ACD/logP	1.28		III	35	27	38	1.28	0.87	III	46	34	21		
	CSlogP	1.29	20	III	37	27	36	1.28	1.06	III	38	29	33		
	COSMOFrag	1.30	1088 ³	III	32	27	40	1.30	1.06	III	29	31	40		
	QikProp	1.32	103	III	31	26	43	1.32	1.17	III	27	24	49		
	KowWIN	1.32	16	III	33	26	41	1.31	1.20	III	29	27	44		
	QLogP	1.33	24	III	34	27	39	1.32	0.80	II	50	33	17		
	XLOGP2	1.80		III	15	17	68	1.80	0.94	III	39	31	29		
N	MLOGP(Dragon)	2.03			34	24	42	2.03	0.90	III	45	30	25		

Different MlogP implementations demonstrate different performances for both sets

Mannhold, Poda, Ostermann, Tetko, *J. Pharm. Sci.*, 2009, 98(3), 861-893

¹Nr of molecu les with ca lculations failures due to errors or crash of programs. All methods predicted all molecules for the Nycomed dataset. ²*RMSE* calculated after excluding of 769 zwitterionic compounds from the Pfizer dataset. ³Most molecules failed by COSMOFrag are zwitterions.

HelmholtzZentrum münchen

German Research Center for Environmental Health

Highlighted Recipes

- Identification and distinction of accurate and inaccurate predictions for global model
- Development of focused (local) models
- Estimation of the accuracy of predictions
- Conclusions

Methods performances for the Pfizer dataset

HelmholtzZentrum münchen German Research Center for Environmental Health

Mannhold, Poda, Ostermann, Tetko, J. Pharm. Sci., 2009, 98(3), 861-893

Development of focused (local) models

The model does not work for my data...

Is it possible to improve the model by incorporating new measurements?

HelmholtzZentrum münchen German Research Center for Environmental Health

http://www.vcclab.org

Virtual Computational Chemistry Laboratory

ALOGPS 2.1

•LogP: 75 variables, 12908 molecules, RMSE=0.35, MAE=0.26

•LogS: 33 variables, 1291 molecules, RMSE=0.49, MAE=0.35

Tetko et al, J. Comput. Aided Mol. Des. 2005, 19, 453-463.

Tetko & Tanchuk, *J. Chem. Info. Comput. Sci.*, 2002, 42, 1136-1145.

HelmholtzZentrum münchen German Research Center for Environmental He

1	Nelcome	to the A	OGPS 21	🔿 🗇 🗇 JME Editor of Peter						
	relevine	to the r	200102.1	CLR DEL D-R +A						
Provide CAS	RN or SMILES of	a molecule and p	ress the "submit" but	- = = ~ △ □ ○ C						
C1(C(=0)0)+	C(N)C=CC=C1		1	° 🔿						
Upload a file	with molecules	in 48 formats	(m	M CH						
C1(Ct=0)0	=C(N)C=CC=C1		: (LI						
CAS RN	118-92-3	formula	C7H7N02	F						
SMILES CI(C)	=0)0)=C(N)C=0	C=C1								
losP (exp)	1	.21	log5 (exp) :	(Submit SMILES) (Close)						
ALOCPS	0.78 <	-0.43>	ALOGES	-1.30 (6.81 g/0						
AC IOSP	0.78 <	-0.43>	AC. 1005	-1.71 (2.71 g/l)						
A8/LoaP	1.36 <	+0.15>	AB/1025	-1.63 (3.22 g/l)						
COSMOFras	0.94 <	-0.27>	Average log5	-1.55(+-0.21)						
mil.aat	1.46 <	+0.25>								
ALOCP.	0.69 <	-0.52>								
MLOCE	1.64 <	+0.43>								
KOWWN	1.36 <	+0.15>	AB/onta (Base)	2.40						
XLOGP2	1.46 <	+0.25>	AB/ONA (ACID)	5.00						
XLOGPI	1.21	<0.00>	PhoProp.ref	Sanuster's ref						
Average log?	1.17(+-0.3	84) <=0.04>		COMPANY CONC.						
User's LoaP L	IDEAEX.	upload library	User's Loos UBRA	upload library						
The calculate	d results are ava	ulable.		4						

Local models: Instant learning of logP for Pt(II) molecules

Prediction of new classes of compounds can be extremely difficult as exemplified by an absence of correlations between predicted and experimental values using the ALOGPS program.

HelmholtzZentrum münchen German Research Center for Environmental Health Tetko et al, J. Inorg. Biochem, 2008, 102, 1424-37.

Local correction of a model based on nearest neighbors

HelmholtzZentrum münchen German Research Center for Environmental Health

Local models: Instant learning by knowledge transfer

The use of LIBRARY mode (local correction of the global model) dramatically (5 times!) decreased logP errors,

HelmholtzZentrum münchen German Research Center for Environmental Health Tetko et al, J. Inorg. Biochem, 2008, 102, 1424-37.

Performance of algorithms for *in-house* datasets

	Pfizer set (<i>N</i> = 95 809)								Nycomed set (<i>N</i> = 882)					
	RMSE	Failed ¹	rank	% in		ange	RMSE, zwitterions	RMSE	rank	% in	error n	ange		
Method			-	NO.0	0.5- 1	~1	excluded ²			NU.0	0.5- 1	~1		
Consensus log P	0.95		I	48	29	24	0.94	0.58	I	61	32	7		
ALOGPS	1.02		Т	41	30	29	1.01	0.68	1	51	34	15		
S+logP	1.02		- I	44	29	27	1.00	0.69	1	58	27	15		
NC+NHET	1.04		Ш	38	30	32	1.04	0.88	Ш	42	32	26		
MLOGP(S+)	1.05		II	40	29	31	1.05	1.17	III	32	26	41		
XLOGP3	1.07		II	43	28	29	1.06	0.65	1	55	34	12		
MiLogP	1.10	27	II	41	28	30	1.09	0.67	1	60	26	14		
AB/LogP	1.12	24	II	39	29	33	1.11	0.88	III	45	28	27		
ALOGP	1.12		II	39	29	32	1.12	0.72	II	52	33	15		
ALOGP98	1.12		II	40	28	32	1.10	0.73	II	52	31	17		
OsirisP	1.13	6	II	39	28	33	1.12	0.85	II	43	33	24		
AAM	1.16		Ш	33	29	38	1.16	0.94	Ш	42	31	27		
CLOGP	1.23		III	37	28	35	1.21	1.01	III	46	28	22		
ACD/logP	1.28		III	35	27	38	1.28	0.87	III	46	34	21		
CSlogP	1.29	20	III	37	27	36	1.28	1.06	III	38	29	33		
COSMOFrag	1.30	1088 ³	III	32	27	40	1.30	1.06	III	29	31	40		
QikProp	1.32	103	III	31	26	43	1.32	1.17	III	27	24	49		
KowWIN	1.32	16	III	33	26	41	1.31	1.20	III	29	27	44		
QLogP	1.33	24	III	34	27	39	1.32	0.80	II	50	33	17		
XLOGP2	1.80		III	15	17	68	1.80	0.94	III	39	31	29		
MLOGP(Dragon)	2.03		III	34	24	42	2.03	0.90	III	45	30	25		

Mannhold, Poda, Ostermann, Tetko, *J. Pharm. Sci.*, 2009, 98(3), 861-893.

¹Nr of molecules with calculations failures due to errors or crash of programs. All methods predicted all molecules for the Nycomed dataset. ²*RMSE* calculated after excluding of 769 zwitterionic compounds from the Pfizer dataset. ³Most molecules failed by COSMOFrag are zwitterions.

HelmholtzZentrum münchen

German Research Center for Environmental Health

Local models: Instant learning of in-house data (Pfizer Inc.), N=95809

ALOGPS Blind prediction

ALOGPS LIBRARY

HELMHOLTZ

ASSOCIATION

HelmholtzZentrum münchen German Research Center for Environmental Health Tetko, Poda J. Med. Chem. 2004, 47(23) 5601-5604

Is it possible to save costs by skipping measurements of some compounds and be satisfied with the calculated values?

HelmholtzZentrum münchen German Research Center for Environmental Health

Estimation of the model accuracy by the distance to nearest neighbors

HelmholtzZentrum münchen German Research Center for Environmental Health

Local model: Accuracy of logP predictions

HelmholtzZentrum münchen German Research Center for Environmental Health Tetko, Bruneau, Mewes, Rohrer, Poda, DDT, 2006, 11, 700-7.

HelmholtzZentrum münchen German Research Center for Environmental Health **Tetko, et al, Chemistry & Biodiversity, in press, 2009.**

Improving accuracy with proposed methodology

CAse studies on the development and application of in-silico techniques for environmental hazard and risk assessment

www.CADASTER.eu

HelmholtzZentrum münchen

German Research Center for Environmental Health

ICANN 2009

September 14-17, Limassol, Cyprus

Home

Search this site:

Challenge

Related topics

- Open Positions
- O People
- Publications
- Publications
- Related Projects
- o Links
- grootes
- U Contact

Latest news

- -----
- Challenge on
 - www.CADASTER.eu

This challenge is organized by ICANN09: International Conference on Artificial Neural Networks, European Neural Network Society (ENNS) and CADASTER project.

Goals of this study

- Develop in silico models to predict environmental toxicity of molecules against T. pyriformis using data from [1].
- Estimate the accuracy of prediction of new compounds. Further information can be found here.

Important key dates

- May 20 2009 All data for the challenge are available.
- · June 1 The submission of results is open.
- · August 31 The submission of results is closed.
- September 14-17 2009 The winner will be announced at ICANN09 conference in September.

The winner will be identified according to the criteria defined below and (s)he will receive a prize. It is expected that the winner as well as other participants will submit articles describing their methodological approaches for publication in a peerreviewed journal (under discussion). Information on how you can participate can be found here. Grand prize for the competition-winners is 1.000 € I

HelmholtzZentrum münchen

Challenges and solutions

Our methodology allows confident navigation in a defined molecular space.

- \checkmark It can be used to develop targeted (local) models covering specific series.
- \checkmark It can be used to reliably estimate which compounds can/can't be reliably predicted.
- \checkmark It can be used to guide experimental design and to minimize costs of new measurements.

Acknowledgements

My group

Mr I. Sushko Mr S. Novotarskyi Mr A.K. Pandey Mr R. Körner Mr S. Brandmaier Mrs F. Ruggiu Dr M. Rupp

Visiting Scientists

Dr. V. Kovalishyn Dr. V. Prokopenko Prof. J. Emmersen

preprints? presentation? google "tetko"

Funding

GO-Bio BMBF <u>http://qspr.eu</u> Germany-Ukraine grant UKR 08/006 DFG TE 380/1-1 FP7 MC ITN ECO FP7 CADASTER <u>http://www.cadaster.ue</u> FP6 INTAS VCCLAB <u>http://www.vcclab.org</u>

HelmholtzZentrum münchen

German Research Center for Environmental Health

deen zünde

