APPENDIX D: Descriptors (Optional)

ADMET Predictor generates 356 molecular descriptors from the 3D structure inputs and 325 descriptors from 2D inputs (04/16/2008). Some of these descriptors are used in the mathematical models for the predicted ADMET properties. Descriptor display is contingent upon the ADMET Modeler Module license. The complete list of descriptors is presented in several tables below, with a brief explanation of each descriptor.

Formula	Molecular Formula
MWt	Molecular Weight (g/mol)
MolVol	Liquid molal volume (cm ³ /mol) at the normal boiling point is
	based on Schroeder's method
VMcGowan	Mc Gowan's characteristic volume
N_Atoms	Number of atoms
N_Carbon	Number of carbons
N_Ntrgen	Number of nitrogens
N_Oxygen	Number of oxygens
N_Phsphr	Number of phosphorus atoms
N_Sulfur	Number of sulfurs
N_Fluorn	Number of fluorines
N_Chlorn	Number of chlorines
N_Bromin	Number of bromines
N_lodine	Number of iodines
N_Halogen	Number of halogen atoms
N_Nonorgn	Number of "non-organic" atoms (i.e., atoms other than
	C,N,O,S,P,halogens)
N_Metal	Number of metallic element atoms
N_Bonds	Number of bonds
N_FrRotB	Number of freely rotatable bonds, terminal bonds excluded. At
	least one bonded atom must be sp3-hybridized.
F_SgleB	Single bonds as fraction of total bonds.
F_DbleB	Double bonds as fraction of total bonds.
F_TpleB	Triple bonds as fraction of total bonds.
F_AromB	Aromatic bonds as fraction of total bonds.
F_AFRBWF	Average value of the freely rotatable bond weight factor. The
	FRBW factor is defined as the minimal atom count fraction per bond.
N_Rings	Number of rings
N AromR	Number of aromatic rings
N_AlipR	Number of aliphatic rings
N_Pisyms	Number of distinct π systems, excluding lone pairs
N_IsoILP	Number of isolated lone electron pairs
N_Kekule	Number of Kekule structures per molecule
Herndon	Herndon resonance energy
AlHdrxlOH	Number of aliphatic hydroxyl groups
ArHdrxlOH	Number of aromatic hydroxyl groups
Carbonyl_C=O	Number of carbonyl (ketone or aldehyde) groups
EtherO-	Number of ether groups

PriAmine_-NH2 PriAmAli -NH2 PriAmAro -NH2 SecAmine >NH TerAmine >N-QuaAmine_>[N+]< ArNitrog =N-Imine___=N-Nitrile C#N Isocynd_[N+]#[C-] Thiol -SH ThioCrbl C=S Sulfide -S-Slfonium_>[S+]-Phsphine >P-HydxlAmn >N-O-Oxime =N-O-Nitroso -N=O Hdrzine_>N-N< Hdrzone =N-N< Azo -N=N-Diazo -[N+]#N ThioAmin >N-S-Disulfde -S-S-Sulfoxde >S=O Thioxime =N-S-Nitro___-NO2 Nitrite -O-N=O Ntrosam_>N-N=O Azoxy___-N(=O)=N-Azide___-N=N#N Sulfone_>S(=O)=O Sulfinat S(=O)O-Phsporat_P(=O)O-Triazo -N-N-N-Oxadiazo -N-O-N-Thiadiaz -N-S-N-Triazene -N=N-N-Nitrate -O-NO2 NNitro >N-NO2 Sulfonat -SO3-Sulfite -SO3< Sulfonmd -SO2-N< PriSlfmd -SO2-NH2 Phsponat -PO3< Sphspnat -SPO2< Phspite_-OPO2< Tetrazo -NNNN-Oxdzoxde_-N(=O)ON-

Number of primary amines Number of primary amines attached to aliphatic carbon Number of primary amines attached to aromatic carbon Number of primary and aliphatic N secondary amines Number of tertiary amine groups Number of quaternary amine groups Number of aromatic nitrogens Number of Imine groups Number of Nitrile groups Number of Isocyanide groups Number of Thiol groups Number of Thiocarbonyl groups Number of Sulfide groups Number of Sulfonium groups Number of Phosphine groups Number of Hydroxyamine groups Number of Oxime groups Number of Nitroso groups Number of Hydrazine groups Number of Hydrazone groups Number of Azo groups Number of Diazo groups Number of Thioamine groups Number of Disulfide groups Number of Sulfoxide groups Number of Thioxime groups Number of Nitro groups Number of Nitrite groups Number of Nitrosamine groups Number of Azoxy groups Number of Azide groups Number of Sulfone groups Number of Sulfinate groups Number of Phosphorate groups Number of Triazo groups Number of Oxadiazo groups Number of Thiadiazo groups Number of Triazene groups Number of Nitrate groups Number of N-connected nitro groups Number of Sulfonate groups Number of Sulfite groups Number of Sulfonamide groups Number of Primary Sulfonamide groups Number of Phosphonate groups Number of Thiolophosphonate groups Number of Phosphite groups Number of Tetrazo groups Number of Oxadiazooxide groups

NOHydxamN(N=O)OH	Number of N-nitrosohydroxylamine groups
Sulfamid_>NSO2N<	Number of Sulfamide groups
SulfateOSO3	Number of Sulfate groups
ThioSulfSSO3	Number of Thiosulfate groups
Phspate_O=PO3<-	Number of Phosphate groups
PhspatS_O=PS(k)O(3-k)<-	Number of ThioloPhosphate $O=P(X)(X)X$ groups (X = S,O)
Sphspat_S=PO3<-	Number of ThioPhosphate groups
SphspatS_S=PS(k)O(3-k)<-	Number of ThioThioloPhosphate $S=P(X)(X)X$ groups (X = S,O)
PhspatN_O=PN(n)O(3-n)<<<	Number of Phosphamide $O=P(X)(X)X$ groups (X = N,O)
SphspatN_S=PN(n)O(3-n)<<<	Number of ThioPhosphamide $S=P(X)(X)X$ groups (X = N,O)
PhsptSN_O=PS(k)N(n)O(3-n-k)<<	Number of ThioloPhosphamide $O=P(X)(X)X$ groups (X = N,O,S)
SPhsptSN_S=PS(k)N(n)O(3-n- k)<<	Number of ThioThioloPhosphamide S=P(X)(X)X groups (X = N,O,S)
Diphspat_O=PO2-O-PO2=O	Number of Diphosphate groups
Triphspt_O=PO2-O-PO(=O)- OPO2=O	Number of Triphosphate groups
AlCbxylCOOH	Number of Aliphatic Carboxyl groups
ArCbxylCOOH	Number of Aromatic Carboxyl groups
EsterC(=O)OC	Number of Ester groups
AmideC(=O)N<	Number of Amide groups
Thioamd_C(=S)N<	Number of Thioamide groups
Amidine_C(=N-)N<	Number of Amidine groups
IsocyantN=C=O	Number of Isocyanate groups
ThiocyntS-C#N	Number of Thiocyanate groups
IsothcntN=C=S	Number of Isothiocyanate groups
Urea>NC(=O)N<	Number of Urea groups
Carbmte_>NC(=O)O-	Number of Carbamate groups
Guandne_>NC(=N-)N<	Number of Guanidine groups
ImideO=C(N-)C=O	Number of Imide groups
Barbitur_C1C(=O)NC(=O)NC1=O	Number of Barbiturate groups
Unknown_	Number of detected but unassigned functional groups
Table 2. Topological Indices:	
X0	Zeroth Order Simple Connectivity Index
X1	First Order Simple Connectivity Index
X2	Second Order Simple Connectivity Index
Kappa1	First Order Simple Kier-Hall shape descriptor
Kappa2	Second Order Simple Kier-Hall shape descriptor
Kappa3	Third Order Simple Kier-Hall shape descriptor
T_Rgrav	Topological equivalent of RgGrav_3D
T_Rgeom	Topological equivalent of RgGeom_3D
T_Radmax	Topological equivalent of RadMax_3D
T_Dipole	Topological equivalent of Dipole_3D
T_Grav3	Topological equivalent of Grav3_3D
T_RDmtr	Relative topological diameter: maximal topological distance divided by the number of atoms
T_PSA	Topological polar surface area, as defined by P. Ertl, et al.
Wiener	Classical Wiener index of the hydrogen-suppressed molecular

graph

Blbn_J	Balaban distance connectivity index J of the hydrogen-
	suppressed molecular graph
Blbn_MSD	Balaban mean square distance index of the hydrogen-
	suppressed molecular graph

Table 3: Atom-type Electropological State Indices:

SsCH3	Atom-type E-state index for -CH3 groups
SdCH2	Atom-type E-state index for =CH2 groups
SssCH2	Atom-type E-state index for -CH2- groups
StCH	Atom-type E-state index for #CH groups
SdsCH	Atom-type E-state index for =CH- groups
SaaCH	Atom-type E-state index for aCHa groups
SsssCH	Atom-type E-state index for >CH- groups
SddC	Atom-type E-state index for =C= groups
StsC	Atom-type E-state index for #C- groups
SdssC	Atom-type E-state index for =C< groups
SaasC	Atom-type E-state index for -Caa groups
SaadC	Atom-type E-state index for =Caa groups (e.g., C=O in
	theophylline)
SaaaC	Atom-type E-state index for aCaa groups
SssssC	Atom-type E-state index for >C< groups
SsNH2	Atom-type E-state index for -NH2 groups
SdNH	Atom-type E-state index for =NH groups
SssNH	Atom-type E-state index for -NH- groups
SaaNH	Atom-type E-state index for aNHa groups
StN	Atom-type E-state index for #N groups
SdsN	Atom-type E-state index for =N- groups
SdssN	Atom-type E-state index for =N< groups (secondary N-oxide)
SdsssN	Atom-type E-state index for =N<- groups (tertiary N-oxide)
StsN	Atom-type E-state index for -N+# groups (diazonium)
StdN	Atom-type E-state index for #N= groups (azide)
SaaN	Atom-type E-state index for aNa groups
SsssN	Atom-type E-state index for >N- groups
SddsN	Atom-type E-state index for -N== groups (nitro)
SaasN	Atom-type E-state index for aaN- groups (e.g., substituted
	imidazole)
SaadN	Atom-type E-state index for aaN= groups (aromatic N-oxide)
SaaaN	Atom-type E-state index for aaNa groups (N-fused rings)
SssssN	Atom-type E-state index for >N+< groups (onium)
SsOH	Atom-type E-state index for -OH groups
SdO	Atom-type E-state index for =O groups
SssO	Atom-type E-state index for -O- groups
SsO-	Atom-type E-state index for coordinated O- groups
SaaO	Atom-type E-state index for aOa groups
SsPH2	Atom-type E-state index for -PH2 groups
SssPH	Atom-type E-state index for -PH- groups
SdssPH	Atom-type E-state index for =PH< groups (phosphinate)
SsssP	Atom-type E-state index for >P- groups
SdsssP	Atom-type E-state index for ->P= groups

SssssP	Atom-type E-state index for >P+< groups (phosphonium)
SssssP	Atom-type E-state index for ->P< groups
SsSH	Atom-type E-state index for -SH groups
SdS	Atom-type E-state index for =S groups
SssS	Atom-type E-state index for -S- groups
SsssS	Atom-type E-state index for -S+< groups (sulfonium)
SaaS	Atom-type E-state index for aSa groups
SdssS	Atom-type E-state index for >S= groups (sulfone)
SddssS	Atom-type E-state index for >S== groups (sulfate)
SsssssS	Atom-type E-state index for ->S<- groups
SsF	Atom-type E-state index for -F groups
SsCl	Atom-type E-state index for -CI groups
SsBr	Atom-type E-state index for -Br groups
Ssl	Atom-type E-state index for -I groups
SHsOH	Atom-type hydrogen E-state index for -OH groups
SHdNH	Atom-type hydrogen E-state index for =NH groups
SHsSH	Atom-type hydrogen E-state index for -SH groups
SHsNH2	Atom-type hydrogen E-state index for -NH2 groups
SHssNH	Atom-type hydrogen E-state index for -NH- groups
SHtCH	Atom-type hydrogen E-state index for #CH groups
SHCH 321	Atom-type hydrogen E-state index for -CH3, -CH2- and >CH-
	groups (saturated aliphatic carbon)
SHdCH2	Atom-type hydrogen E-state index for =CH2 groups
SHdsCH	Atom-type hydrogen E-state index for =CH- groups
SHaaCH	Atom-type hydrogen E-state index for aCHa groups (aromatic carbons)
S_unknown	Counts the number of unrecognized E-state atom types. Please examine relevant molecules and inform Simulations Plus if you suspect this is a software bug.

Parameter	Description	Example
M_CX	Summation of numbers of carbon and halogen atoms weighted by C:1.0, F:0.5, CI:1.0, Br:1.5, and I:2.0.	
M_NO	Total number of N and O atoms	
M_PRX	Proximity effect of N & O; where X-Y:2.0, X-A-Y:1.0 (X,Y can be N or O and A can be C,S, or P) with a correction (-1) for carboxamide/sulfonamide.	$H_2C^{\neq N}O^{\neq CH_3}=2$ $H_3C^{\neq N}O^{\neq CH_3}CH_{3-1}$
M_UB	Total number of unsaturated bonds except those in NO ₂	=3
M_HB	Number of intramolecular hydrogen bonds as <i>ortho</i> –OH and –C(=O)-R, or –OH and –NH ₂ , or –NH ₂ and –COOH, or 8-OH/NH ₂ in quinolines, <i>etc.</i> $\begin{array}{c} NH_2 \\ OH \\ OH \\ NH_2 \end{array}$	

M_POL	Number of aromatic polar substituents (aromatic substituents excluding Ar-CX ₂ - and Ar-CX=C<, where X: is C or H.	$H_2 = 2$
M_AMP	Amphoteric property; -amino acid:1.0, amino benzoic acid: 0.5, pyridinecarboxylic acid 0.5. OH $OHH_2N = 0.5 = 0.5$	н ₃ с он NH ₂ =1.0
M_ALK	Indicator variable for alkane, alkene, cycloalkane, or cycloalkene (hydrocarbons with 0 or 1 double bond)	H ₃ C [←] CH ₃ H ₃ C [←] CH ₂
M_RNG	Indicator variable for the presence of ring structures except benzene and its condensed rings (aromatic, heteroaromatic, and hydrocarbon rings).	
M_QN	Quaternary nitrogen: >N ⁺ <: 1.0, N oxide:0.5 H N N O = 0.5	H ₃ C CH ₃ H ₃ C CH ₃
M_NO2	Number of nitro groups	
M_NCS	Isothiocyanate (-N=C=S): 1.0, thiocyanate (-S-C#N): 0.5	
M_BLM	Indicator variable for the presence of beta-lactam.	N → O

Table 5. Molecular Pattern Recognition Flags:

AlphaAA	Alpha Amino Acid Flag
PrAlphAA	Primary Alpha Amino Acid Flag
AlphaAE	Alpha Amino Ester Flag
PrAlphAE	Primary Alpha Amino Ester Flag
Steroid	Flag Indicating Steroid-like Fused Ring Subunit

Table 6. Meylan Flags for MH Sw models:

Parameter	Description	Exceptions

H_AlAlco (Aliphatic Alcohol)Compounds with exactly one OH group attached to an aliphatic hydrocarbonCompounds with multiple OH, and any functional group other than OH(Aliphatic Alcohol) OH H_3C OH H_3C OH H_3C OH H_3C OH H_3C H_AlAcid (Aliphatic Acid)Compounds with one or more carboxyl groups attached to aliphatic carbonsAmino acids (aliphatic or aromatic amines, except quaternary) and amidesH_AlAmin (Aliphatic Amine)Compounds with primary, secondary, or tertiary amines attached to aliphatic carbonsMelting point greater than $25^{\circ}C$
Alcohol) $H_{3}c$ H_{3}
H_AlAcid (Aliphatic Acid)Compounds with one or more carboxyl groups attached to aliphatic carbonsAmino acids (aliphatic or aromatic amines, except quaternary) and amides(Aliphatic Acid) $\stackrel{OH}{}_{H_3c} \stackrel{OH}{\frown o}$ $\stackrel{OH}{}_{H_2N \stackrel{O}{\frown o}}$ H_AlAmin (Aliphatic Amine)Compounds with primary, secondary, or tertiary amines attached to aliphatic carbonsMelting point greater than $25^{\circ}C$
H_AlAcid (Aliphatic Acid)Compounds with one or more carboxyl groups attached to aliphatic carbonsAmino acids (aliphatic or aromatic amines, except quaternary) and amides(Aliphatic Acid) $\stackrel{OH}{}_{H_3c} \stackrel{OH}{\frown o}$ $\stackrel{OH}{}_{H_2N \stackrel{O}{\frown o}}$ H_AlAmin (Aliphatic Amine)Compounds with primary, secondary, or tertiary amines attached to aliphatic carbonsMelting point greater than $25^{\circ}C$
H_AlAcid (Aliphatic Acid)Compounds with one or more carboxyl groups attached to aliphatic carbonsAmino acids (aliphatic or aromatic amines, except quaternary) and amides(Aliphatic Acid) $\stackrel{OH}{}_{H_3c} \stackrel{OH}{\frown o}$ $\stackrel{OH}{}_{H_2N \stackrel{O}{\frown o}}$ H_AlAmin (Aliphatic Amine)Compounds with primary, secondary, or tertiary amines attached to aliphatic carbonsMelting point greater than $25^{\circ}C$
(Aliphatic Acid) groups attached to aliphatic carbons amines, except quaternary) and amides (Aliphatic Acid) OH H_3c OH H_3c oH H_2N H_AlAmin (Aliphatic Amine) Compounds with primary, secondary, or tertiary amines attached to aliphatic carbons Melting point greater than 25°C
(Aliphatic Acid) groups attached to aliphatic carbons amines, except quaternary) and amides (Aliphatic Acid) OH H_3c OH H_3c oH H_2N H_AlAmin (Aliphatic Amine) Compounds with primary, secondary, or tertiary amines attached to aliphatic carbons Melting point greater than 25°C
(Aliphatic Acid) OH H_3C amides 0H H_2N OH H_2N 0H H_2N H_AlAmin Compounds with primary, secondary, or tertiary amines attached to aliphatic carbons Melting point greater than 25°C
H_AlAmin Compounds with primary, secondary, or tertiary amines attached to aliphatic Amine) Melting point greater than 25°C
H_AlAmin Compounds with primary, secondary, or tertiary amines attached to aliphatic Amine) Melting point greater than 25°C
H_AlAmin Compounds with primary, secondary, or tertiary amines attached to aliphatic Amine) Melting point greater than 25°C
(Aliphatic Amine) tertiary amines attached to aliphatic carbons
(Aliphatic Amine) (Aliphatic carbons (Aliphatic carbons)
Amine)
н ₃ с <u>н</u> сн ₃
H ₃ C [^] N [^] CH ₃ N ¹
H_ArAcid Compounds with at least one carboxyl Compounds with any amino-type
group attached to an aromatic carbon substituent attached to the same ring
(Aromatic Acid) where –COOH is attached. "Amino-
o type" = aliphatic nitrogen whose only
OH attachments are carbons or other
nitrogens.
Q Q
—он
NH ₂
H_PhenolCompounds with at least one OHCompounds with amino-type
attached to an aromatic carbon substituent on the same ring and
(Phenol) compounds with nitro, alkyloxy or othe
он OH ortho to OH
он О
H_AIPyri Compounds with at least one pyridine Only alkyl substituents allowed; carbo
ring attached to ring must by CH ₃ ,
(Alkylpyridine) CH ₂ -, or CH<
H Azo Compounds with -N=N- Both N's must be attached to carbon
H_Azo Compounds with -N=N- Both N's must be attached to carbon

H_Nitrile	Compoundo with C-N	N=C-CN, C=N-CN
	Compounds with -C=N	
(Nitrile)		
H_Hcarb	Aliphatic compounds with only C and H	
(Hydrocarbon)	H ₃ C ^{CH} 3	
H_Nitro	Aliphatic and aromatic compounds with	N attachment or any amino or OH
(Nitro)	nitro (-NO ₂) group	substituent if nitro group is attached to aromatic ring
(INITO)		aronado mig
		ОН
	× N. ↓-	
	8	N ⁺
H_SO2	Compounds with at least one	
(SO ₂)	sulfonamide on aromatic ring plus an other substituent that is ketone, sulfone,	
(302)	or another sulfonamide on the same	
	ring; also applies to compounds with	
	-S(=O)-C-C(=O)-C (number of O on S is not limited)	
	О 0=\$-NH ₂	
	, o	
	0 ^{/9} CH ₃	
H_Falkan	Hydrocarbon compounds with at least	
(Fluoroalkane)	one fluorine	
	F	
	F CH3	
	Сп ₃ F	
H_PAH	Hydrocarbons with at least three rings,	
(Polycyclic	at least two of which must be aromatic. \bigcirc	
aromatic		
hydrocarbons)		

H_MultiN (Multi-N)	Compounds with at least one of the following: - four or more aromatic nitrogens - zero aromatic and two or more aliphatic nitrogens. Exactly one aliphatic N must be attached to C(=O), C(=S), or S(=O) - two or more aromatic and two or more aliphatic nitrogens. All aliphatic nitrogens must be attached to C(=O), C(=S), or S(=O) $\bigvee_{N} \bigvee_{N} \bigvee_{N$	Compounds with at least one of the following: - sulfonamide - barbiturate - metal atom or ion $ \begin{array}{c} & & \\ & & & \\ & & \\ & & & \\ & & $
H_AmAcid (Amino Acid)	Compound with at least one carboxyl and at least one amino group.	Compounds with aromatic attachment of at least one carboxyl group.

Table 7. Descriptors	Derived	from	Electronic	Properties	(charge	unit=absolute	electron
charge)							

8 /	
FormalQ	Formal electric charge
ABSQ	Sum of Absolute Values of PEOE Partial Atomic Charges
ABSQon	As above, but only on O and N atoms
MaxQ	Maximal PEOE Partial Atomic Charge
MinQ	Minimal PEOE Partial Atomic Charge
NPA_ABSQ	Sum of absolute values of estimated NPA partial atomic
	charges
NPA_AQon	As above, but only on O and N atoms
NPA_AQh	As above, but only on H atoms
NPA_AQc	As above, but only on C atoms
NPA_MaxQ	Maximal Estimated NPA Partial Atomic Charge
NPA_MinQ	Minimal Estimated NPA Partial Atomic Charge
NPA_Q1	First component of the autocorrelation vector of estimated
	NPA partial atomic charges
NPA_Q2	Second component of the autocorrelation vector of estimated
	NPA partial atomic charges
NPA_Q3	Third component of the autocorrelation vector of estimated
	NPA partial atomic charges
NPA_Q4	Fourth component of the autocorrelation vector of estimated
	NPA partial atomic charges
NPA_Q5	Fifth component of the autocorrelation vector of estimated
	NPA partial atomic charges
NPA_Q6	Sixth component of the autocorrelation vector of estimated NPA partial atomic charges
EEM AFon	Sum of absolute values of sigma Fukui indices on N and O
EEM_AFc	Sum of absolute values of sigma Fukui indices on C
—	0
EEM_AFpl	Sum of absolute values of sigma Fukui indices on polar atoms
EEM_AFnp	Sum of absolute values of sigma Fukui indices on nonpolar atoms
EEM_MaxF	Maximum sigma Fukui index
EEM_XFon	Maximum sigma Fukui index on N and O
	Maximum signa i ukui much on ni anu O

EEM_NFon	Minimum sigma Fukui index on N and O
EEM_XFh	Maximum sigma Fukui index on H
EEM_XFc	Maximum sigma Fukui index on C
EEM_NFc	Minimum sigma Fukui index on C
EEM_XFpl	Maximum sigma Fukui index on polar atoms
EEM_NFpl	Minimum sigma Fukui index on polar atoms
EEM_XFnp	Maximum sigma Fukui index on nonpolar atoms
EEM_NFnp	Minimum sigma Fukui index on nonpolar atoms
EEM_F1	First component of the autocorrelation vector of sigma Fukui indices
EEM_F2	Second component of the autocorrelation vector of sigma Fukui indices
EEM_F3	Third component of the autocorrelation vector of sigma Fukui indices
EEM_F4	Fourth component of the autocorrelation vector of sigma Fukui indices
EEM_F5	Fifth component of the autocorrelation vector of sigma Fukui indices
EEM_F6	Sixth component of the autocorrelation vector of sigma Fukui indices
Pi_ABSQ	Sum of absolute values of Hückel pi atomic charges
Pi_AQo	As above, but only on O atoms
Pi_AQn	As above, but only on N atoms
Pi_AQc	As above, but only on C atoms
Pi_MaxQ	Maximum Hückel pi atomic charge
Pi_MinQ	Minimum Hückel pi atomic charge
Pi_Q1	First component of the autocorrelation vector of Hückel pi
—	atomic charges
Pi_Q2	Second component of the autocorrelation vector of Hückel pi atomic charges
Pi_Q3	Third component of the autocorrelation vector of Hückel pi
11_00	atomic charges
Pi_Q4	Fourth component of the autocorrelation vector of Hückel pi
	atomic charges
Pi_Q5	Fifth component of the autocorrelation vector of Hückel pi
	atomic charges
Pi_Q6	Sixth component of the autocorrelation vector of Hückel pi
	atomic charges
Pi_AFPIc	Sum of absolute values of pi Fukui(+) indices on C
Pi_AFMic	Sum of absolute values of pi Fukui(-) indices on C
Pi_MaxFPI	Maximum pi Fukui(+) index
Pi_MaxFMi	Maximum pi Fukui(-) index
Pi_FPI1	First component of the autocorrelation vector of pi Fukui(+)
Pi FPI2	indices Second component of the autocorrelation vector of pi Fukui(+)
11_1112	indices
Pi_FPI3	Third component of the autocorrelation vector of pi Fukui(+) indices
Pi FPI4	Fourth component of the autocorrelation vector of pi Fukui(+)
	indices
Pi_FPI5	Fifth component of the autocorrelation vector of pi Fukui(+)
Pi_FPI6	indices Sixth component of the autocorrelation vector of pi Fukui(+)

	indices
Pi_FMi1	First component of the autocorrelation vector of pi Fukui(-) indices
Pi_FMi2	Second component of the autocorrelation vector of pi Fukui(-) indices
Pi_FMi3	Third component of the autocorrelation vector of pi Fukui(-) indices
Pi_FMi4	Fourth component of the autocorrelation vector of pi Fukui(-) indices
Pi_FMi5	Fifth component of the autocorrelation vector of pi Fukui(-) indices
Pi_FMi6	Sixth component of the autocorrelation vector of pi Fukui(-) indices
EqualChi	Equalized molecular electronegativity
EqualEta	Equalized molecular hardness
Elephity	Electrophilicity index
N_Electr	Total number of electrons in a molecule
PolarizG	Polarizability in A ³ calculated by Glen's method
PolarizM	Polarizability in A ³ calculated by Miller's method

Table 8. Hydrogen Bonding Descriptors:

IHB PHB	Number of Intra-molecular Hydrogen Bonds Proximity Effects of HB Donors and HB Acceptors. Similar to IHB, but counts all possible donor-acceptor pairs within the IHB range.
HBD	Number of Hydrogen Bond Donors
HBA	Number of Hydrogen Bond Acceptors
HBDo	Number of Oxygen-based Hydrogen Bond Donors
HBAo	Number of Oxygen-based Hydrogen Bond Acceptors
HBDn	Number of Nitrogen-based Hydrogen Bond Donors
HBAn	Number of Nitrogen-based Hydrogen Bond Acceptors
HBDch	Sum of Estimated NPA Partial Atomic Charges on HB Donor Hydrogens
HBAch	Sum of Estimated NPA Partial Atomic Charges on HB Acceptors
HBDoch	Sum of Estimated NPA Partial Atomic Charges on Oxygen- based HB Donor Hydrogens
HBAoch	Sum of Estimated NPA Partial Atomic Charges on Oxygen- based HB Acceptors
HBDnch	Sum of Estimated NPA Partial Atomic Charges on Nitrogen- based HB Donor Hydrogens
HBAnch	Sum of Estimated NPA Partial Atomic Charges on Nitrogen- based HB Acceptors

Table 9. Molecular Ionization Descriptors:

N_IoAcAt	Number of recognized ionizable atom types that are acidic
N_loBaAt	Number of recognized ionizable atom types that are basic
AcidAtoms	Numeric labels and types of all detected acidic atoms (string)
BaseAtoms	Numeric labels and types of all detected basic atoms (string)
FAnion	Cumulative Contribution of Purely Anionic Species to Fraction Ionized at Specified pH (default 7.4)
FCation	Cumulative Contribution of Purely Cationic Species to Fraction Ionized at Specified pH (default 7.4)

FUnion	Cumulative Contribution of All Species with Zero Formal Charge to Fraction Ionized at Specified pH (default 7.4)
FZwitter	Portion of FUnion Contributed by Zwitterionic Species (does not depend on pH)
QAvgNeg	Absolute Value of the Population Average Across All Ionized Species of the Net Formal Negative Charge Calculated at Specified pH (default 7.4)
QAvgPos	Population Average Across All Ionized Species of the Net Formal Positive Charge Calculated at Specified pH (default 7.4)
F_NLP	Population Average Across All Ionized Species of the Number of Lone Electron Pairs on N,O,S,P, Divided by the Number of Atoms
F_HBP	Population Average Across All Ionized Species of the Number of Protons Available for Hydrogen Bonding, Divided by the Number of Atoms

Table 10. 3D Descriptors (length unit=angstrom, mass unit=dalton):

RgGrav3D	Gravitational radius of gyration
RgGeom3D	Geometrical radius of gyration
RadMax3D	Distance between center of mass and the most distant atom
Propr13D	Simulations Plus proprietary descriptor
MIRxx3D	Largest principal moment of inertia
MIRyy3D	Medium principal moment of inertia
MIRzz3D	Smallest principal moment of inertia
SM2xx3D	Smallest principal static moment of the second order
SM2yy3D	Medium principal static moment of the second order
SM2zz3D	Largest principal static moment of the second order
BoxX3D	Smallest dimension of the tightest enclosing box in A
BoxY3D	Medium dimension of the tightest enclosing box in A
BoxZ3D	Largest dimension of the tightest enclosing box in A
DStokes_3D	Stokes-Einstein diffusion coefficient (cm^2/s x 10^5)
Propr23D	Simulations Plus proprietary descriptor
Grav33D	Cube root of Wessel gravitational index
TotASA3D	Total solvent accessible surface area in A^2
PolASA3D	Polar solvent accessible surface area in A^2
NpoASA3D	Nonpolar solvent accessible surface area in A^2
SolvE3D	Aqueous solvation energy in kcal/mol
SolvEMt_3D	Length of the solvation energy moment vector in A*kcal/mol
PEoED3D	Proximity effects of electron donors. Descriptor derived from Anna Seelig's work on P-glycoprotein substrate recognition patterns.
PEoEDIa_3D	Proximity effects of electron donors of type I including atoms with hydrogens. Descriptor derived from Anna Seelig's work on P-glycoprotein substrate recognition patterns.
PEoEDIb_3D	Proximity effects of electron donors of type I excluding atoms with hydrogens. Descriptor derived from Anna Seelig's work
PEoEDIIa3D	on P-glycoprotein substrate recognition patterns. Proximity effects of electron donors of type II including atoms with hydrogens. Descriptor derived from Anna Seelig's work
PEoEDIIb3D	on P-glycoprotein substrate recognition patterns. Proximity effects of electron donors of type II excluding atoms with hydrogens. Descriptor derived from Anna Seelig's work

	on P-glycoprotein substrate recognition patterns.
HBAsa3D	Total solvent accessible surface area on HB acceptors
HBAwsa3D	Estimated NPA charge-weighted solvent accessible surface area on HB acceptors
PosASA3D	Positively NPA-charged solvent accessible surface area
NegASA3D Dipole3D	Negatively NPA-charged solvent accessible surface area Estimated NPA dipole moment