
Introduction 

The sampling of representative compounds deliv-
ers a sensitive subset of a defined chemical space.
When used for experimental design, it contributes
to financial and time efficiency, as it permits the
calculation of highly predictive models at a low
experimental cost (1). Furthermore, it is relevant
for several other tasks in chemo-informatics and
computational chemistry, such as drug design (2)
and risk assessment (3). 

Most applications in chemistry work in the
descriptor space (4). After applying an orthogonal
transformation by employing a principal compo-
nent analysis (PCA) to increase the dimensionality
of the chemical space, selection algorithms, such as
the D-Optimal criterion (5), the Kennard–Stone
algorithm (6) or the Most Descriptive Compound
(MDC) selection (7), are applied. Bayesian
approaches (8–10) that take preliminary informa-
tion into account, or adaptive approaches that
refine the representation of the chemical space in a
step-wise manner, are rarely used. Our recent
studies investigate iteratively optimised variables
to span the search space for experimental design,
by combining a partial least squares technique
with a dissimilarity selection (11), and a simple
descriptor selection with a similarity selection, to
increase the efficiency of the experimental design.
Having said that, both approaches still work on a
representation of the chemical space that uses

descriptors as the basis for the selection of
compounds.

In this study, we propose a novel adaptive pro-
jection that moves from a descriptor-based con-
struction of the chemical space toward a predicted
property-based view. We investigate three strate-
gies for experimental design — one of them uses
the predicted properties to define the chemical
search space, while the others use the concept of
the ‘distance to model’ (DM) parameter, suggested
by Tetko et al. (12–14), to estimate the uncertainty
of prediction for each compound within a data col-
lection. We are not aware of other studies in com-
putational chemistry that use this parameter for
compound selection.

The DM-based approaches decide whether to
test a compound either exclusively on the basis of
the prediction uncertainty, or they combine this
parameter with a compound’s hypothetical contri-
bution in decreasing the prediction uncertainty of
other relevant compounds. The estimation of this
contribution is based on the correlation in ensem-
ble predictions, a concept that is the basis of
Associative Neural Networks (ASNN; 15), and
which is also used in the ASNN Library mode to
make local corrections (16). 

We statistically evaluated the new approaches on
four regression data sets, each with a different end-
point, and on one classification data set.
Furthermore, the performances of the newly devel-
oped approaches were compared to the performances
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of several non-adaptive strategies. It is shown that
the use of predicted properties can significantly
improve the efficiency of experimental design and
decrease the number of experiments required. An
investigation on the usability of the approaches and
their limitations was also carried out.

Material and Methods

Data sets

Regression data sets

Four regression data sets were used to evaluate the
performance of our approaches, and to compare the
results with those of other approaches. The endpoint
for the smallest of the data sets was the log-scaled
bioconcentration factor (logBCF) in fish. This set
contained 238 different compounds, and was taken
from a study by Gramatica et al. (17). The authors
originally split the measurements into a training set
of 179 compounds and a validation set of 59 com-
pounds. These data sets are freely accessible in the
QMRF database of the European Commission (18),
as well as in the Online Chemical Modelling
Environment Project (OCHEM; 19) database. The
data set, as was used in our study, was merged from
the original split.

The second data set contained 648 measurements
for the adsorption coefficient between the organic
partition of soil and water, logKOC. The original
source was a collection by Meylan et al. (20). 

The third data set contained 1093 measurements
of toxicity against the protozoan, Tetra hymena pyri-
formis. The endpoint was the negative, log-scaled
inhibition of growth concentration (–logIGC50). All
the measurements in this data set were taken from
our previous study (12), and originated from the
Tetratox database (21) and from several studies by
Schulz et al. (22–24). The fact that all these meas-
urements were obtained by the same laboratory
ensured consistency and helped to avoid problems
resulting from different experimental procedures or
laboratory conditions.

The last regression data set contained 1198
measurements for the boiling point, and was
extracted from the Estimation Program Interface
(EPI) Suite data (25). It was collected only for halo-
genated compounds containing bromine, chlorine
and/or fluorine. 

Inorganic compounds, radicals, charged mole-
cules and salts were removed from all the data
sets. In addition, we excluded compounds without
an explicit value, where only an interval, or a min-
imum or maximum value, was given. Except for
the boiling point data set, no structural filters were
applied, so the sets for logBCF, logKOC and

–logIGC50 represent a wide chemical diversity. All
the collections had already been used in our previ-
ous studies on representative compound selection
(11, 26). 

OCHEM (19) was used to arrange the data sets
and calculate the descriptors. We used an aggrega-
tion of ALOGPS descriptors (27) and E-State indices
(28, 29) to chemically represent the compounds in
this study. ALOGPS descriptors estimate the
lipophilicity and solubility of a compound, whereas
the E-State indices are electro-topological descrip-
tors calculated for each atom in a compound. All the
descriptors were normalised to [0,1] interval. The
rationale to normalise, rather than standardise, the
descriptors was that standardisation estimates a
normal distribution of a descriptor, which is not the
case for E-State indices.

The classification data set

In addition to the regression data sets, we evalu-
ated the performance of our approaches on a
binary classification data set, as the requirements
for a meaningful sample of a classification data set
are most likely to be different to those for a regres-
sion set. The set we used contained 7481 measure-
ments of the human CYP 1A2-inhibition activity of
small molecules, which were taken from the bioas-
say AID410 in the PubChem database. The assay
data were deposited in October 2007, and the data
set was used in a previous study on comparative
modelling of cytochrome inhibition (30). The origi-
nal data set obtained from this bioassay contained
8348 compounds.

Compounds that were labelled ‘inconclusive’ were
excluded from the data set. Furthermore, if the
same molecule was present in both the ‘active’ and
the ‘inactive’ set, it was removed from all the sets.
The final distribution of the remaining 7481 com-
pounds was almost balanced, as 4016 were labelled
‘active’ and 3465 were labelled ‘inactive’. As for the
regression data set, normalised ALOGPS descrip-
tors and E-State indices were used to represent the
compounds.

Predicted properties

Prediction error versus standard deviation

The underlying theory on the ensemble-based appli-
cability domain (AD) estimation is that compounds
which are predicted with a high reliability are less
prone to small variations in the training data set,
and that there is a correlation between the uncer-
tainty in prediction and the prediction error. The
simulation of the variations in the data set could be
done by using a bagging approach to generate a pre-
defined number of subsets by re-sampling with
replacement. For this study, we fixed the number of

34                                                                                                                                          S. Brandmaier et al.



bags to 64. Each of these subsets is then used to
build a prediction model for either an endpoint of
continuous values, or a classification model. The
resulting collection of models can then be used to
predict the target property for new compounds. By
receiving not only one prediction but a whole set of
them, not only can the average value, which is used
as the prediction value, be calculated, but in addi-
tion, the variance in the predictions as a measure-
ment of uncertainty can also be determined. 

Previous studies (12–15) have shown the corre-
lation between the uncertainty of the prediction
and the prediction error. Figure 1 illustrates this
correlation for the –logICG50 data set. Each light
grey dot represents a compound, the x-axis repre-
sents the standard deviation (SD) of the ensemble
predictions and the y-axis represents the predic-
tion error. The black line depicts the cumulative
error of all the compounds predicted within a cer-
tain standard deviation, and the dark grey line
depicts the average error of a sliding window.

Independence of descriptors

An additional feature of the predictions derived with
the bagging approach is that they define a compound
in terms of the property space, instead of the descrip-
tor space. This enables the representation of a data
set to a higher extent of independence of a certain

descriptor set. To visualise this we calculated
DRAGON 6.0 descriptors (31), E-State indices and
quantitative name property relationship (QNPR)
descriptors (derived from a SMILES representation
of the compounds; 32) for the –logIGC50 data set,
and reduced all three representations of the data set
to two principal components. The results are shown
in Figure 2. The colouring of the compound dots is
just a topological indication to enable the identifica-
tion of changes in the data set depiction — it has no
functional meaning.

In addition, we used the bagging approach to cal-
culate 64 partial least squares (PLS) regression
models (33) on each descriptor set, and reduced the
derived predictions for each molecule to two prin-
cipal components. The results are shown in Figure
2. Again, the colouring has only topological mean-
ing. It is obvious that both the distribution of sin-
gle compounds (as the overall shape of the
distribution), and the variance within the principal
components, are harmonised to a greater extent in
the predicted properties view.

Selection approaches

Kennard–Stone

Our implementation of the Kennard–Stone algo-
rithm (6) starts with the most representative com-
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Figure 1: The correlation between prediction uncertainty (variation of prediction) and
prediction error for a model on environmental toxicity of 1093 molecules against
T. pyriformis
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pound. The most representative compound was
defined as the one with the lowest sum of pairwise
distances to all other compounds in the data set.
From this initially selected compound seed, the
Kennard–Stone algorithm works sequentially and
selects the compounds in a fixed order. At each
step, the next instance to be selected is the one
with the greatest distance to its nearest neighbour
and which is thereby furthest from the existent
selection.

k-Medoid selection

k-Medoid clustering partitions a set of data points
into a given number of subsets. Each data point in
the underlying data set is thereby assigned to
exactly one cluster. The problem of finding the
optimal partitioning belongs to the computation-
ally expensive class of NP-hard problems (34).
Therefore, iterative heuristics are used to find a
local minimum.

Figure 2: Principal components of a data set on descriptors (left) and predicted properties (right)

Different to a representation by using the principal components derived directly from the descriptors, the
representation of the compounds by using predicted properties results in a highly uniform description, independent of
the underlying descriptor set.
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Referring to the given number of k expected clus-
ters, k compounds are randomly assigned as clus-
ter centres. In the next step, all remaining
compounds are assigned to the nearest cluster, and
the cluster centres get reassigned within each clus-
ter to the data point with the lowest sum of pair-
wise distances to all other compounds in the
cluster. This step of reassigning compounds to a
cluster centre and reassigning the cluster centres,
is iteratively executed until convergence is
reached. In this context, convergence means that
the cluster centres do not change any more
between two reassignment cycles.

As the cluster centre is the point with the lowest
sum of pairwise distances to all other points within
a cluster, this point can also be seen as the most
representative point within the cluster. Therefore,
in our experimental design approach, it is returned
as the selected instance. This approach was shown
to be highly efficient for experimental design in our
previous study (26). 

Adaptive approaches

Based on a predefined selection of compounds, the
stepwise approaches extend this seed in a stepwise
manner and according to the predicted properties,
and thereby, the AD estimation. After each (hypo-
thetical) measurement cycle, a new ensemble of 64
bagging models is calculated by using PLS regres-
sion (33, 35).

AD-Fetcher: The first approach we implemented
(referred to as ‘AD-Fetcher’) uses the predictions of
the bagging models and the derived standard devia-
tion for the compound selection. Based on the (sim-
plified) assumption that a high variance in
prediction implies a high uncertainty, in each step it
selects the compound with the highest standard
deviation. This can improve the experimental design
performance in two ways: firstly, it extends the
existing selection (and implicitly also the resulting
model) with a compound that is not yet within the
AD and therefore with new information; secondly,
the selected compound, which was predicted with a
high uncertainty, no longer needs to be measured.

AD-Spider: The second approach not only takes the
uncertainty of the prediction into account, but also
combines it with the representativeness of a com-
pound, which is deduced from the correlation in
the predictions. The underlying estimation is that
correlated predictions imply a common mode of
action, and that the extension of the selected set by
a certain compound also leads to an increased
uncertainty and prediction error in correlated
compounds.

As for the previous approach, we start with the
assumption that the variance in prediction is pro-

portional to the prediction error. Furthermore, we
assume that the extension of a model with a cer-
tain compound decreases the uncertainty in pre-
diction of another compound in proportion to the
correlation in the predictions of these two com-
pounds. A similar concept has been successfully
applied for the local corrections in the log P predic-
tion by Tetko et al. (16) and is called LIBRARY
mode. Both assumptions, as used in this study, are
simplifications of a more complex context.
Nevertheless, these assumptions should be suffi-
cient for the prioritisation of representative com-
pounds in a data set. In addition, one has to take
into consideration that experimental design aims
toward efficiency, not toward exhaustiveness. 

From our two estimations, it can be inferred that
the compound which has to be chosen in each
measurement cycle, is the compound that
decreases the prediction error of all the remaining
compounds to the highest extent. Our implementa-
tion of this concept works with one matrix and two
vectors: first, the standard deviation vector, S,
which contains the compound-wise standard devi-
ation of the predictions; then the correlation
matrix, C, which contains the pairwise correlation
of the prediction of each compound; and finally, the
decision vector, D, which is initially derived from a
matrix multiplication of C and S and displays the
representativeness of each compound. The first
compound to be selected in a measurement cycle is
the one with the highest representativeness — it is
the compound with the highest correlation to those
compounds with the highest variances.

After the selection of a compound, the decision
matrix has to be updated to remove the estimated
contribution of the recently selected compound.
The correction factor for a compound is thereby cal-
culated from the correlation between the recently
selected compound and the compound itself. The
decision score is multiplied by the difference
between one and this correlation.

AD-Descriptors: In addition to the approaches for
dealing with the variance in predictions, we imple-
mented stepwise procedures for both the
Kennard–Stone algorithm and the k-Medoid cluster-
ing to work on the predicted properties, instead of
the descriptors. Whereas the non-adaptive selection
of these approaches was executed on a fixed number
of five principal components derived from the
descriptors, the stepwise approach was executed on
only three latent variables derived from the 64 pre-
dicted properties of each compound. The reason to
decrease the number of dimensions was that a PCA
on predicted properties usually covers most of the
variance in the data set within the first principal
component, as shown in Figure 2. Therefore, the
influence of any further dimension on the selected
compounds would have been marginal, but would
have extended the computational complexity.
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As the Kennard–Stone algorithm selects com-
pounds based on an initial selection, no modifica-
tions to its implementation were required. On the
contrary, the k-Medoid implementation was
adapted to use the pre-selected compounds as fixed
cluster centres, which could not be reassigned, and
to select new compounds in reference to these clus-
ter centres.

Validation procedure  

To obtain a meaningful statistical basis and to com-
pare the performances of the implemented
approaches on both regression and classification
data sets, all five collections were split into two par-
titions. In each data set, 16% of the compounds were
excluded from the selection process and used as a
respective external validation set. The remaining
84%, referred to as the design set, were used to exe-
cute the selection approaches. Two hundred and fifty
of these random splits were made and each of them
was subject to the same experimental design strate-
gies. For the logBCF and the logKOC data sets, selec-
tions of 5, 7, 10, 15, 20, 25, 30 and 40 compounds
were drawn in this predefined order. For the
–logIGC50 and the boiling point data sets, addi-
tional selections of 50 and 60 compounds were
drawn. As the number of compounds in the classifi-
cation data set was at least six times higher than the
number of compounds in the largest regression data
set, we selected samples of 10, 20, 30, 40, 60, 80, 100
and 120 compounds.

The selection process for the non-adaptive
approaches (random sampling, as well as the k-
Medoid clustering and the Kennard–Stone algo-
rithm on principal components) was started from
scratch for each sample size. Contrary to the step-
wise approaches, the selection process was strictly
based on the sequence as mentioned above.
Thereby, the compounds selected in each previous
step are used in the next step as a known seed; the
newly selected compounds just extend this seed. 

The performance of each approach was deter-
mined with a PLS regression model on all nor-
malised descriptors. PLS regression was also used
for the classification data set and the retained con-
tinuous values were discretised into two bins. The
criterion to determine the number of latent vari-
ables for the final model was the best coefficient of
determination derived in a ten-fold cross valida-
tion (35). The measurement of quality was the root
mean squared error (RMSE), as well as the corre-
lation coefficient for the regression data sets. The
balanced accuracy (the arithmetic mean of recall of
both classes) as well as the F-Measure (harmonic
mean of recall and precision) was used to deter-
mine the quality of the classification models.

The statistical significance of the different per-
formances (derived by different approaches) was

estimated according to a binomial test, by using
the binomial distribution with n = 250 trials corre-
sponding to the number of models used in our
study.

Software Used 

PLS models to evaluate the performance of the
analysed approaches were calculated by using
WEKA (39). 

Accessibility of the Data

The data sets used in this article and the models
built on them are available at: http://ochem.eu/

Results

Regression data sets

Prediction error

Figure 3 shows the average error performance on
the non-selected compounds for: a) the logBCF
data set; b) the logKOC data set; c) the boiling point
data set; and d) the –logIGC50 data set. The x-axis
represents the number of selected compounds, and
the y-axis represents the average RMSE out of 250
trials. The random selection is illustrated by the
open triangles, the k-Medoid approach by the
closed squares, and the Kennard–Stone approach
by the closed circles. With regard to the underlying
data on which the approaches have been executed,
the lines are solid for the static approaches on
principal components derived from descriptors, or
dashed for adaptive approaches on principal com-
ponents derived from the predicted properties. The
AD-Fetcher approach that works only on the dis-
tance to model is represented by the open circles,
and the AD-Spider approach, which additionally
takes the pairwise correlations between the pre-
dictions into account, is shown as closed triangles.
The same symbols and lines were used in all
further figures.

The first observation that can be deduced is that,
for all the approaches and for all the data sets, the
average error decreased with an increasing num-
ber of selected compounds. The second observation
is that, for all data sets, the performance of the
Kennard–Stone algorithm on principal compo-
nents derived from descriptors delivered the worst
models. Although the use of principal components
on predicted properties improved the performance,
it was still significantly worse than most other
approaches. What is further noteworthy is the high
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initial average error for both implementations of
the Kennard–Stone approach, as well as the incon-
sistent development of the error performance for
the static implementation. The development of all
the other approaches is smoother, approaching a
hyperbolic function.

Referring to the logBCF data set, the only
approaches that performed significantly better than
the random approach were the two k-Medoid

approaches (on principal components derived from
descriptors and derived from predicted properties).
The performances of all the other approaches were
worse, at a statistically-significant level (p < 0.05).
Further more, the two approaches that used the AD
estimation performed better than the Kennard–
Stone approaches. On the logKOC data set, all sys-
tematic approaches, except the Kennard–Stone
approaches (i.e. AD-Spider, AD-Fetcher, k-Medoid

Figure 3: A comparison of the average RMSE performance on the 250 splits for the
regression data sets

= Random; = Kennard–Stone; = k-Medoid; = Kennard–Stone (PP); = k-Medoid (PP); = AD-Spider
= AD-Fetcher.

The k-Medoid clustering performs well on all data sets, the AD-Spider approach performs equally well on the logKOC
and the boiling point data set and better on the –logIGC50 dataset.
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and k-Medoid on predicted properties), performed
equally well and significantly better than the ran-
dom approach. With regard to its low initial average
error, the AD-Fetcher can be seen to be the best-
working approach.

The observations on the boiling point data set
are similar to those on the logKOC data set, with
the exception that the best initial performance was
derived from the clustering approaches and that
the improvement to the performance of the random
approach was not so significant. In addition, from
40 selected compounds upward, the performance of
the AD-Fetcher did not improve any further.
Finally, on the –logIGC50 data set, only the AD-
Spider approach performed significantly better
than the random approach. The k-Medoid
approaches showed a similar performance to that
of the random approach, whereas the clustering
approach on predicted properties consistently per-
formed better than the clustering approach on
descriptors. Nevertheless, this difference was not
statistically significant. Comparable to the per-
formance on the boiling point data set, the AD-
Fetcher had a good initial error performance, but
revealed stagnation from 30 selected compounds
upward.

The evaluation of performance with regard to
the correlation revealed no further insights. The
observations were equivalent to those for the
RMSE, and for this reason, they are not discussed
in detail in this paper. Furthermore, the develop-
ment of RMSE and correlation on the external val-
idation set was similar to the development on the
non-selected data set for all endpoints and meth-
ods.

Robustness 

To permit a comparison of the stability and relia-
bility of the various approaches, we calculated the
SD of the RMSE for all the approaches, for all the
data sets. The results can be seen in Figures 4a–d.

We explicitly chose not to show the SD on the
same graph as the average RMSE, as this could
imply that it is possible to evaluate the signifi-
cance of an improved performance by the overlap-
ping intervals. In fact, due to the preceding
random exclusion of 16% of the compounds from
each design set, this is not the case. A sampling of
design sets showed that the performance derived
from different splits differed by more than two
SDs. Nevertheless, the SD of the models derived
with the selection approaches is a valid measure-
ment for estimating the uncertainty within one
selection approach and for comparing it to that of
other approaches. 

The observations on the SD are similar for all
data sets. Compared to the other approaches, the
initial SD of the random approach was higher, but

it decreased the fastest. For all other systematic
approaches, the standard deviation decreased (and
thereby the reliability of the resulting models
increased) with a growing number of selected com-
pounds. The SD of the Kennard–Stone algorithm
on descriptors revealed quite an inconsistent
occurrence: for the logBCF, it increased consis-
tently; for the logKOC data set, it peaked at 20
selected compounds; for the boiling point data set,
the peak was reached at 40 selected compounds;
and only for the –logIGC50 data set was the pat-
tern similar to that of the other systematic
approaches. Furthermore, the model error develop-
ment for the boiling point data set was remarkable
when considering the reliability of the AD-Spider
approach. For the whole range, from 15 to 40 com-
pounds, we compared the models derived for each
of the 250 validation splits with the model derived
in the previous step. We found that, across the whole
range, a minimum of 200 models (80%) improved
with any additional selected compound, that is, in
200 of 250 cases the model quality increased when
the training set was extended with new compounds,
selected by the AD-Spider approach. 

Classification data set

With reference to the size of the CYP-inhibition
data set, due to the high computational costs of the
AD-Fetcher approach (i.e. a total number of
130,000 PLS models is required) and its poor per-
formance, we excluded a full statistical validation
of the AD-Fetcher approach with the classification
data.

The performance of the other approaches is
shown in Figure 5a, and the corresponding SDs are
shown in Figure 5b. The y-axis shows the develop-
ment of the balanced accuracy. 

Similarly to the results derived on the regression
data sets, the performance of the Kennard–Stone
approaches was significantly worse than that of
the other approaches. Furthermore, the k-Medoid
approaches were within the best methods for com-
pound selection. The performance of the AD-Spider
approach was significantly worse than that of the
clustering approach, and was also worse than the
results derived from a random selection. A com-
parison of the F-measure as a criterion of predic-
tion quality resulted in the same observations.

Discussion  

AD-Spider

The AD-Spider approach, which takes the variance
and the correlation of predictions into account, per-
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formed significantly better than a random selec-
tion of the data sets for logKOC, the boiling point
and –logIGC50. Furthermore, with the logKOC
data set and the boiling point, its performance was
as good as that of the k-Medoid approach. When
compared on the –logIGC50 data set, it performed
even better (i.e. with statistical significance). In
contrast, the average AD-Spider performance with
the logBCF data set was significantly worse than
that of a random selection. The reason for this dif-
ference can be found in a depiction of the principal
components derived from the E-State indices for
the data set. Figure A1.1 in Appendix 1 shows that
most compounds are within a small subspace, with
the remaining compounds widely scattered and
sparsely filling the rest of the chemical space.

We therefore attempted a comparison of the
approaches, with the same data set, but with dif-
ferent (not fragment-based) descriptors. It was
decided to use Inductive descriptors (36) and
MERA descriptors (37, 38) for the representation
of the compounds. A repeat of the examination of
the logBCF data set with those descriptors
resulted in a clearly better performance for the
AD-Spider approach. Obviously, the AD-Spider
approach is not appropriate for scattered com-
pound distributions (see Appendix 1, Figure
A1.2).

Furthermore, taking that into consideration, in
comparison to the k-Medoid approach, the AD-
Spider performs significantly worse for a data set
of 238 compounds, equally well for a data set of 648

Figure 4: A comparison of the standard deviation derived from the RMSE performance

= Random; = Kennard–Stone; = k-Medoid; = Kennard–Stone (PP); = k-Medoid (PP); = AD-Spider
= AD-Fetcher.
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compounds, and significantly better for a set of
1093 compounds. This implies that there is a cor-
relation between the size of the data set and the
performance of AD-Spider with it. Such a depend-
ency seems logical as a chemical space that is
defined by a lower number of compounds is less
densely populated. Therefore, the probability of
finding pairwise correlations in predictions
between the compounds is decreased or is just arbi-
trary. As the approach relies on these correlations,
small data sets affect its performance.

Referring to the classification data set, the per-
formance of the AD-Spider approach was not able
to reach the performance of the best approaches,
and in particular, the clustering approaches or
the random selection. This can be justified with
the use of discretised PLS regression predictions
to define the predicted property space. This dis-
cretisation can lead to a loss of information, as
the resulting variance in prediction differs from
the one calculated by the continuous PLS
predictions.

To gain a deeper insight into the mechanisms
in the approach, we investigated the compounds
within the logKOC data set, because they are
highly significant with regard to the quality of
the resulting model. Therefore, we built 7000
models based on the data set, each with 20 ran-
domly selected compounds. We used these models
to predict the remaining compounds, which had
not been used for model building, and calculated
the RMSE. For each of the 648 compounds in the

data set, we calculated the average RMSE of all
the models to which it contributed, and used it as
a measurement of representativeness. Finally,
we used the selected compounds from the 250
validation trials, and applied AD-Spider to draw
20 compounds, and counted the number of cases
each molecule had been selected. 

The result of this analysis is shown in Figure
6a. The axes depict the principal components,
and each data point represents one compound.
Highly representative compounds, which con-
tributed to good models, are coloured red; those
contributing to poor models are coloured yellow.
The size of the data points indicates how often a
compound was selected with the AD-Spider
approach. Remarkably, almost all the frequently
selected compounds have a high, or very high,
representative quality. Figure 6b shows the same
correlation for the k-Medoid selection. Although
this approach also favours the selection of com-
pounds with good representativeness, compared
to the AD-Spider approach, it is not as successful
for the highly representative compounds, nor as
specific to certain compounds. This leads to the
conclusion that the good performance of the k-
Medoid approach is, largely, a result of its good
statistical coverage of the chemical space, while
the good performance of the AD-Spider approach
results from its ability to recognise highly repre-
sentative compounds. We repeated this compari-
son for the boiling point and the –logIGC50 data
set, and the same correlations were observed.

Figure 5: Balanced accuracy and according standard deviation for the classification data set

= Random; = Kennard–Stone; = k-Medoid; = Kennard–Stone (PP); = k-Medoid (PP); = AD-Spider.
The best performing approach is the k-Medoid clustering executed on predicted properties.
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AD-Fetcher

The performance with the logBCF data set was com-
parable to that for AD-Spider and, over the whole
range, significantly worse than the random
approach. The data set on logKOC is the only one
where the AD-Fetcher approach could perform simi-
larly to the AD-Spider and the k-Medoid approaches,
and where it performed significantly better than the
random approach. For the boiling point data set, it
performed well initially. However, from 40 selected
compounds, the performance of the approach did not
significantly improve any further, which was con-
trary to all the other approaches tested. The same
observation can be made for the –logIGC50 data set.
This approach works for fewer than 30 selected com-
pounds, but from this point, its performance is sig-
nificantly worse than that of the AD-Spider or the
k-Medoid approach.

This finding can be explained by the parameteri-
sation employed. The decision for selecting a com-
pound is made exclusively by its variance in
prediction. By selecting not only one compound per
measurement cycle, but five or ten, we do not ensure
that the selected compounds are not correlated. This
means that we do not have a mechanism to avoid
drawing redundant information within a cycle.

AD-Descriptors  

With regard to the regression data sets, the use of
a three-dimensional PCA space derived from pre-

dicted properties, instead of a search space defined
by descriptors or their orthogonal transformation,
has to be interpreted in two ways. First, in the case
of the k-Medoid clustering, the performance did
not significantly change. A clear tendency toward
descriptor space or predicted property space was
not observable for the error performance, the SD or
the correlation coefficient. Only when the reliabil-
ity in terms of improvement was regarded, was
there a slight (but not significant) bias toward
favouring the predicted properties. The switch in
the search space representation neither improved
nor diminished the performance of the selection
approach. The robustness of the k-Medoid
approach against the dimensionality of the search
space had already been shown in our previous
study (26). Furthermore, the results of this study
indicate that, if the search space takes information
about the target property into account, it has no
influence on the performance of the approach.

Second, in the case of the Kennard–Stone
approach, switching the search space signifi-
cantly improved the performance with all the
regression sets with regard to error and correla-
tion. In the case of the boiling point and the
logKOC data sets, the initial performance with
fewer than 20 and 15 selected compounds, respec-
tively, was not improved by the use of a stepwise
approach on predicted properties. However, start-
ing from this point significantly improved it. For
the other two data sets, the performance
improved when predicted properties were used
instead of principal components starting with

Figure 6: A selection of highly representative compounds

Compounds with high explanatory power are coloured red, others yellow; the size of each dot represents how often a
compounds is chosen. The selection of the AD-Spider approach recognises these highly representative compounds
better than the k-Medoid clustering.

a)  AD-Spider b)  k-Medoid
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only seven selected compounds, i.e. the perform -
ance improved immediately.

With regard to the classification data set for
CYP-inhibition, the use of a predicted property
space could improve the performance of the
Kennard–Stone algorithm. In addition, the bal-
anced accuracy of the k-Medoid approach was also
significantly improved for 20 to 60 selected com-
pounds.

Comparison with models on the whole data
set

To permit an overview of the approaches examined,
we used OCHEM to calculate reference models for
each data set. The reference models were built on
the same descriptors as the validation models for the
selection, by using PLS regression on a fixed number
of three latent variables. For the evaluation, a ten-
fold cross validation was used, and one SD was used
as a measurement of uncertainty.

For the k-Medoid approach on descriptors as
well as on predicted properties and the AD-Spider
approach, we investigated the number of com-
pounds that were required to reach a model of the
same accuracy. The results can be seen in Table 1.
The first column indicates the data set, the second
and third columns contain information on the
average performance and associated uncertainty,
and the following columns display the number of
compounds that are required to build a model
within one SD of the reference model. The best
approaches, referring to the number of required
compounds, are indicated in shaded boxes.

The AD-Spider approach delivers the best per-
formance for the logKOC and the –logIGC50 data
set, and delivers models with similar performance
for only 20 out of 648 (3.1%) and for 30 out of 1093
(2.7%) compounds. The k-Medoid approach on pre-
dicted properties is the best performing approach
on the CYP-inhibition data set, with 120 out of
7481 (1.6%) compounds.

Conclusion

We showed in this study that the variance in pre-
dictions can not only be used to estimate the AD of
a model, but also to make an intelligent and pur-
posive selection of representative compounds. A
stepwise solution that iteratively refines the depic-
tion of the chemical space depending on prior
knowledge is target-oriented and can improve the
results.

The attempt to select compounds exclusively by
their variation in predictions appears to be inap-
propriate if not executed in a one-by-one manner.
Therefore, the number of suitable applications is
limited. On the contrary, the combination of this
variance with correlated development in predic-
tions, which putatively indicates a common mode
of action, produced very good results. We could
show the efficiency of this approach, especially for
sufficiently large regression data sets (more than
500 compounds) with a non-scattered distribution
of compounds.

The observation that the stepwise use of predicted
properties, instead of the static use of principal com-
ponents, improves the performance of selection
approaches is not limited to the Kennard–Stone
algorithm. In this study, we also examined its influ-
ence on other selection approaches, such as the D-
Optimal criterion or the full factorial design.
Although these studies were not as exhaustive as
the ones presented in this paper, they indicated the
same effect.

Except for the logBCF data set, the models
derived with the AD-Spider and the k-Medoid
approach on predicted properties required less
than 5% of compounds of the whole data set to cre-
ate models for which the performance did not sig-
nificantly differ from models derived on the whole
data set.

Therefore, stepwise, adaptive experimental
design approaches that make use of predicted
properties for a representative compound selec-
tion, are efficient and can be recommended.

Table 1: Reference models on the whole data set

Reference Reference 
Data set RMSE balanced accuracy k-Medoid AD-k-Medoid AD-Spider

logBCF 0.65 ± 0.06 — 20 25 N/A

logKOC 0.65 ± 0.05 — 20 25 20

Boiling point 45.00 ± 2.20 — 50 60 60

–logIGC50 0.62 ± 0.04 — 40 40 30

CYP inhibition — 75.4 ± 1.0 150 120

— = no data. Shaded boxes indicate the best approaches.
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Appendix 1

Figure A1.1: Principal components derived from various descriptors

a)  E-State indices b) Inductive descriptors c) MERA descriptors

Figure A1.2: Comparison of the performance of a random approach with the k-Medoid
clustering and the AD-Spider approach on various descriptors
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