

Rijksinstituut voor Volksgezondheid en Milieu Ministerie van Volksgezondheid, Welzijn en Sport

Overview of CADASTER: project goals, achievements and lessons

Willie Peijnenburg

CADASTER

- General: REACH, ITS
- CADASTER: Overview aims/goals
- Achievements
- Some lessons learned

REACH

Registration, Evaluation, Authorisation and Restriction of Chemicals

- REACH requires demonstration of safe manufacture and use of chemicals
- REACH based on precautionary principle, aims at achieving proper balance between social, economic and environmental objectives
- REACH aims to optimise the use of scarce and scattered info on substances
- REACH aims to minimise animal testing by optimal use of info on "related" compounds

Minimised animal use:

- 1 Use of validated *in silico* techniques: (Q)SAR/(Q)SPR
- 2 New in vitro test methods, in vivo info analogues
- 3 Minimization actual numbers of animals used, and replacement of animal tests by alternative methods
- 4 Substance Information Exchange Forums (SIEFs) for obligatory provision of data and cost sharing
- 5 Requirement of official sanctioning of proposals for tests for compounds with production volumes of above 100 tonnes to minimize animal testing

Goals

- Exemplify the integration of information, models, strategies for safety, hazard, and risk assessment for 'large' numbers of substances
- Carry out "real" hazard assessment for 'large' numbers of substances according to the basic philosophy of REACH: < costs, animal testing, time
- Thus: Exemplifying how to increase non-testing information whilst quantifying and reducing uncertainty

Aim

Provide full environmental hazard and risk assessment according to the REACH philosophy for chemicals belonging to 4 classes of emerging chemicals:

1 – Polybrominated diphenylethers (PBDE), typically class of **hydrophobic** chemicals that pose a threat to man and the environment.

2 - Perfluoroalkylated substances and their transformation products, like
 perfluoroalkylated sulfonamides, alkanoic acids, sulfonates. Persistent hydrophilic
 compounds that may be toxic for man and environment.

3 – Substituted musks/fragrances; a heterogenic group of chemicals of varying composition like substituted benzophenones, polycyclic musks, terpene derivatives.
 Common emission pattern in the environment.

4 - Triazoles/benzotriazoles: increasingly used as pesticides and anti-corrosives.

	ec [‡] 22	
	S	
	r I	
PBDE: "The PCB's o	f the future"	Classification of PFOS- compounds in 22 categories according to OECD
Table 3. Personal care products pro (1993). Product category	duced in Germany	o_l
Bath additives Shampoos, hair tonic Skin care products Hair sprays, setting lotions, hair dyes Oral hygiene products Soaps Sun screens	162,300 103,900 75,500 71,000 69,300 62,600	
Perfumes, aftershaves Total	7,900 6,600 559,100	
Perfumes, aftershaves Total Pharmaceuticals an Personal Care Proc	7,900 6,600 559,100 nd ducts in	Microbicidal benzotriazol

Outcome

DSS – regularly updated for new compound classes:

- New testing strategies
- New testing data
- New models
- Actual integrated evaluations, including uncertainty and variability
- On-line and stand-alone tool

Operationalization of Goals

- Collection of basic information
- Data gap analysis + validation existing models/methods
- Generation new data and models
- Integration data/models in probabilistic risk assessment framework
- Carry out hazard assessment quantify uncertainty (exp. data, model predictions, fate assessment models, effect assessment models)
- Integrate in website

Collection of data and models

- Experimental data intrinsic hazards Screening Initial Data Set Dossier (SIDS)
- Models Screening Initial Data Set Dossier (SIDS)
- Generation new data essential for validation and proper hazard/risk assessment
- Database data/models: dissemination purposes

Development/validation QSAR models

- Evaluate performance
- Similarity analysis and multivariate ranking methods for identification of priority chemicals to orient the experimental testing
- Develop new QSARs where gaps are identified due to lack of existing models or due to models of insufficient quality
- Documentation of the performance of the (final) models selected and developed – QMRF Reporting

Integration of QSARs within hazard and risk assessment

- Integration in probabilistic risk assessment framework: characterize variability/ uncertainty, sensitivity analyses with regard to contributions in overall risk assessment framework, modelling of variability
- Evaluate ECETOC TRA screening risk assessment tool
- Evaluate methods and decision points for establishing scientific validity and applicability domains for QSAR models
- Explore possibilities for economic valuation of substitution of chemicals from within chemical classes
- Policy and management: provision of recommendations on a viable management strategy for optimized testing and in-silico modeling of hazardous organic substances

Outreach: website, newsletters/ workshops, stand-alone tools for dissemination of project results

- Development of on-line, stand-alone DSS: develop, publish, use QSAR/ QSPR models for REACH
- Integration of the developed models with the QSAR Application Toolbox developed by OECD: establish the compatibility of the models with the (Q)SAR Model Reporting Format (QMRF) format
- Provision of a sustainable dissemination of project results by the WWW and as stand-alone tools
- Communication including newsletters and workshop(s)

SOME ACHIEVEMENTS (details during workshop)

- Data collection: 6838 exp. data – 2482 chemicals (dec. 2011)

- Lack of relevant (SIDS) data

Model collection

- Various models collected
- Various endpoints, various compound classes
- Local and general models: Local models generally higher accuracy
- Gap analysis as lead to further data collection and model development
- Majority of existing QSARs lack external validation;
- Definition Applicability Domain often lacking \rightarrow
- Most models do not fulfill OECD principles QSAR validation

Model collection

AD%_{243 BFR} R^2 Q^2_{LOO} Endpoint **Descriptors** Nobi MP* 25 X2A 96% Example: MLR-models 0.82 0.84 LogVP* 83% 0.98 34 T(O..Br) 0.99 LogKoa* 82% 30 0.97 phys. Chem. Properties: T(O..Br) 0.97 LogKow* 86% 20 T(O..Br) 0.96 0.96 7 BEHe7 56% Log H not 0.97 0.93 Ext Val 12 Mor23m 95% LogWS not 0.92 0.88 Ext Val Revision 6449 by itetko checked in on 2011-12-08 17:58:53. Built from null on 2011-Welcome, Dear N Miss Kovarich ADASTER (1) My Account Silico Techniques CAse studies on the Devel d Application of in Logout Home - Database - Models -A+ a-Model applier X Open the model profile X Overview of the model w statistics of the mo Overview Applicability domain Model name: LogWS_PFCs [rename], published in Prediction of Aqueous Solubility, Vapor Pressure [Dragon (blocks: 2 5)] Correl. limit: 1.0 Unique values: 0 Variance and Critical Micelle Concentration for Aquatic Partitioning of Perfluorinated Chemicals (†). public threshold: 0.0 Maximum value: 999999 UFS: identifier is 18 false, [T(F..F), SIC1] Predicted property: Aqueous Solubility Training method: OLS Uploaded model with external validation modeled in log(mg/L) 2 filtered descriptors Data Set # R₂ **q**2 RMSE MAE Y = -0.419 -0.004*T(F..F) + 5.183*SIC1 • Training set: PFC-LogWS Training set 20 records 0.76 0.76 0.84 0.62 Calculated in 24 seconds Size: 6 Kb 2 0 -2 0 -3 -2 0 2 3 4 -1 Measured value Download model statistics in Excel format Create a copy of this model View configuration XML Export configuration XML Add QMRF url RECALCULATE MODEL AND STATISTICS APPLY THE MODEL TO NEW COMPOUNDS

Summary models developed

Partner	Endpoint	Algorithm	Molecular Descriptors	Applicability Domain	Validation
PFCs					
RIVM	EC50 lettuce EC50 algae EC50 <i>D. magna</i> EC50 <i>C.sphaericus</i>	-Linear Regression based on nC (number of carbon atoms in the alkyl chain) -Interspecies Relationships <i>D.</i> <i>magna-C.sphaericus</i> and lettuce-algae	nC		R ²
B-TAZs			1		1 2
UI	EC50 algae EC50 daphnia LC50 fish	-MLR regression (OLS) to all the endpoints -Interspecies Relationship Daphnia-Fish (prediction of EC50 fish)	1D-2D descriptors by Dragon (v. 5.5), PaDEL (open source) and CADASTER database	Leverage approach	Internal $(R^2, Q^2_{LOO}, Q^2_{BOOT}, Y$ - sc etc) External $(Q2ext$
	LC50 earthworm LD50 honeybee LD50 bird	Classification K-NN			F1-F2-F3, R2m, CCC etc)
IVL	EC50 algae EC50 daphnia LC50 fish	PLS Regression	1D-2D-3D descriptors by Dragon software (v. 6.0)	DModX	Internal (R ² ,Q ² , RMSEE) External (RMSEP)
LnU	LC50 fish	PLS Regression	descriptors by Dragon software (v. 6.0)		Internal (R ² , RMSE) External (Q2ext RMSE)
HMGU	EC50 algae EC50 daphnia LC50 fish	kNN, ASNN, FSMLR, PLS, MLRA, SVM	1D-2D-3D descriptors by CADASTER database		
IDEA	LC50 fish	MLR	Dragon 5.4 descriptors from SMILES	Leverage approach	Internal $(R^2, Q^2_{LOO}, Q^2_{BOOT}, Y$ - sc etc) External (Q2ext F1-F2-F3, CCC etc)

Integration within Hazard/risk assessment

- Ongoing: development of QSAR integrated probabilistic RA platform
- Integration models, exp. data, exposure, effects in probabilistic
- Explicit characterisation/quantification of variability/uncertainty: exp. data, predictive models
- Sensitivity analysis: SSD, fate model: `classical' statistical methods + Monte Carlo simulations

Some key findings

- No single "menu" Hazard Assessment 4 compound classes
- Sensitivity analysis: outcome dependent on fate and effect properties
- Key is: optimize hazard/risk assessment by integration tools + data, taking chemical diversity into account

Entry page QSPR-thesaurus database

evision 2010-12-20 16:54:47 by 146.107.19.12 checked in on null. Built from null on r		-	20		
afari 5 on Mac - Not tested Velcome, Guest! Logout	Ase studies on the Development and Application of in-Silico Teo	chniques for E	Invironmenta	hazard and Ris	kassessmen
Home Database Models					A+ a-
Models applier browser					
Step 1. Select a model from the list					
Filter by model name: and property nam	e: or by article id: Moo	lels visibility	: Public and	private 🗘 [ref	resh]
1 - 10 of 10					
MP_TAZs_remap , published by simona	predicts Melting Point using TAZ_MP_Training set (56)	MLRA 2	2010-11-12	🗟 🖹 📃 🖯	
LogVP_TAZs_remap , published by simona	predicts Vapor Pressure using TAZ_LogVP_Training set (33)	MLRA 2	2010-11-12	🗟 🖺 📃 🖯	
LogWS_TAZ , published by simona	predicts Aqueous Solubility using TAZ_LogWS_Training set (49)	MLRA 2	2010-11-11	🗟 🖺 📃 🖯	
LogWS_PFCs , published by simona	predicts Aqueous Solubility using PFC_LogWS_Training set (20)	MLRA 2	2010-11-11	🗟 🖺 📃 🖯	
LogVP_PFCs_remap(p4-2C) , published by simona	predicts Vapor Pressure using PFC_LogVP_Training set (35)	MLRA 2	2010-11-12	🗟 🖺 📃 🖯	
Papa_PDE_Henry new , published by wolfram	predicts Henry using Ester_Papa_LogH (7)	MLRA 2	2010-07-05	🗟 😫 📃 🖯	
Papa_PDE_TM new , published by wolfram	predicts Melting Point using Ester_Papa_TM (25)	MLRA 2	2010-07-05	🔈 🐴 🛄 🖃	
Papa_PDE_Log_PL new , published by wolfram	predicts Vapor Pressure using Ester_Papa_Log_PL (34)	MLRA 2	2010-07-05	D 🖹 🛄 🗆	
Papa_PDE_Log_KOW new , published by wolfram	predicts logPow using Ester_Papa_LogKOW (20)	MLRA 2	2010-07-05	🗟 😫 📃 🖯	
Papa_PDE_LogKOA New , published by wolfram	predicts LogKoa using Ester_Papa_LogKOA (30)	MLRA 2	2010-07-05	🗟 🖲 📃 🖃	
1 - 10 of 10					

Next>>

Dissemination

Publically available models

Revision 2010-12-20 16:54:47 by 146.107.19.12 checked in on null. Built from null on null

me - Database - Models -					
odels applier browser					
Step 1. Select a model from the lis	t				
Filter by model name:	and property name:	or by article id: M	odels visibility	/: Public and	private 🛟 [refre
1 - 10 of 10					
MP_TAZs_remap , published by simona		predicts Melting Point using TAZ_MP_Training set (56	MLRA	2010-11-12	la 🖹 📃 🖯
LogVP_TAZs_remap , published by simona		predicts Vapor Pressure using TAZ_LogVP_Training set (33)	MLRA	2010-11-12	🗟 🖺 📃 🗆
LogWS_TAZ , published by simona		predicts Aqueous Solubility using TAZ_LogWS_Training set (49)	MLRA	2010-11-11	🗟 🖺 📃 🗆
LogWS_PFCs , published by simona		predicts Aqueous Solubility using PFC_LogWS_Training set (20)	MLRA	2010-11-11	🔉 🖹 🛄 🗖
LogVP_PFCs_remap(p4-2C) , published by simona		predicts Vapor Pressure using PFC_LogVP_Training set (35)	MLRA	2010-11-12	
Papa_PDE_Henry new , published by wolfram		predicts Henry using Ester_Papa_LogH (7)	MLRA	2010-07-05	🗟 🖺 📃 🗆
Papa_PDE_TM new , published by wolfram		predicts Melting Point using Ester_Papa_TM (25)	MLRA	2010-07-05	🗟 🖺 📃 🖃
Papa_PDE_Log_PL new , published by wolfram		predicts Vapor Pressure using Ester_Papa_Log_PL (34)	MLRA	2010-07-05	la 🖹 📃 🖃
Papa_PDE_Log_KOW new , published by wolfram		predicts logPow using Ester_Papa_LogKOW (20)	MLRA	2010-07-05	🗟 🖺 📃 🖯
Papa PDE LogKOA New , published by wolfram		predicts LogKoa using Ester Papa LogKOA (30)	MLRA	2010-07-05	

Next>>

Dissemination

3D optimization within MOPAC/BOINS

CADASTER	CAse studies on the Developm	ent and Application.of in-Silico Te	chniques for Environmental h	izard and Risk astessment
Home	About Us	Cadaster	Морас	Help
Records 🧹 📈 Ex	port 🛖			_
$1 - 5 \text{ of } 14 \geq >>$	Items j	per page: 5	Page	of 3 ID:86911 Source:original
$0 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	MolecularWe LumoEnergy: TotalEnergy TotalElectro 52706.33478 I Electron 63147.9104 F F ElectronEl 88 Prin PrincipalMome	ight: 500.127 ElectronNuc -2.37 NuclearNuclearRepu y: -10441.57568 Resonance bataticInteraction: 175.6 onisationPotential: 11.97 Electron: 6957.8887 Elect 46 DipolHybrid: 1.564 Hom tronNuclearAttraction: -1 LectronRepulsion: 51865.6 9.86796 ExchangeEnergy: - ncipalMomentsInertiaC: 12 ncipalMomentsInertiaA: 12 entsInertiaB: 11603.28924 3.312	<pre>lear: -16935.1328 lsion: 52706.3348 Energy: -477.3395 548 CoreRepulsion: 059 DipolSum: 2.383 ronicEnergy: - oEnergy: -11.971 04396.3585 785 FinalHeat: - 162.6469 121.329671 193.578204 2 DipolPointCharge:</pre>	ID:86912 Source:balloon
		TotalEnergy: -10441.6375	2	ID:87780 Source:original

Implementation QMRF form

2.General information

[+] Expand

3. Defining the endpoint - OECD Principle 1

[+] Expand