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Quantitative structure-property relationship (QSPR) studies on Melting Point and Boiling Point of Perfluorinated Chemicals (PFCs) are presented. PFCs are studied under the
EU-FP7 funded CADASTER project to understand its behavior in biota and environment. They are considered as ‘emerging pollutants’ and found widely distributed in the
environment, released due to their widespread use in different household and industrial products as cleansers, fire-fighting foams, micelles, repellants for leather, paper, and
textiles etc. Continues exposure of these chemicals is found to be the source of bio-accumulation in body parts of human, wildlife and is ultimately becoming the cause of toxic
reactions and poisoning.
Models are developed using SRC PhysProp data as described below. In addition, the predictive performances of the developed models were verified on a blind external validation
set (EV-set) prepared from experimental values available from PERFORCE database. This database contains only long chain perfluoro-alkylated chemicals, particularly
monitored by regulatory agencies like US-EPA and EU-REACH. QSPR modeling using different approaches, internal and external validation on two different prediction sets and
studies of the applicability domain highlight the robustness and high accuracy of the proposed models. Finally, Melting Point for additional 397 PFCs and Boiling Point for 364
PFCs for which experimental measurements are unknown were predicted, verifying their applicability domain. The set of descriptors which best describes the structure-
property relationship, the similarities, and the differences observed will be discussed as well as the consensus model predictions.
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76-16-4 MP –101.00 –155.71 –138.33 –155.60
307-34-6 MP –42.0 –50.36 –54.73 –56.80
307-55-1 MP 108.0 75.63 107.29 111.0 [33]
354-32-5 MP 146 2.45 -91.56 –146.0 [34]
375-22-4 MP –17.5 13.40 -1.99 –18.0 [33]
423-55-2 MP 25* -22.74 -40.99 –6.0 [35]
1493-13-6 MP 25* 50.26 –31.38 –40.0 [36]
426-65-3 MP  BP 75.5 32.29 -21.43 n/a [37]
355-46-4 BP 238.5 228.71 241.87 225.0 [38]
375-73-5 BP 211.0 196.93 207.33 200.0 [39]
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RESULTS AND DISCUSSION

Dragon descriptors allow a complex and differentiated view on the molecule, while E-State indices
give a more uniform description and Fragment based descriptors provide an easily interpretable
base for modeling. For simple properties like boiling point, fitting a small, variable-selected MLRA
model to the data subset provides excellent results. This approach is also robust against erroneous
data. At the complexity level of melting point (or e.g. vapor pressure), this approach competes in
quality with E-State-ASNN models, that are easily obtainable from scratch. The well interpretable
but quite tedious approach using selected fragment descriptors results in a slight drop in model
quality. Also, since literature data is often published for classes of compounds that are directly
connected to fragments, common systematic errors (such as pressure variations for BP) give low
RMSE of the models but inadequate models, so extra care has to be taken here in the validation step.
It is remarkable that data collected from the databases has a high number of errors like mixed up
algebraic signs or approximated values, so that data validation and overlap is necessary. Here, the
relation between BP and MP gives valuable information that can be employed. As expected, the
accuracy of the prediction models is better than for 'generic' boiling and melting point models.

The results fit our experience that a consensus model, built from
independently developed models using different descriptors and
using different algorithms, delivers the best prediction results. In
the special case of PFCs, simple statistical algorithms applied to
complex descriptors perform about as good as complex algorithms
applied to simple descriptors. Developing both types of models
enables a more specialized and also more detailed look on outliers
and opens lots of possibilities to analyze them. Chemical
interpretation of and experimental design emerging from the
models benefit from having a set of models representing different
views of the underlying mechanics.


