
-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

nH

-1

0

1

2

3

4

5

6

7

8

9

10

H
A

TS
6

m

 Inactive (exp) 

 Inactive (pred) 

 Active (exp) 

 Active (pred) 

ACTIVEACTIVE ifif
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INTRODUCTION Perfluorinated compounds (PFCs) are a class of emerging pollutants still widely used in different materials as non-adhesives, waterproof fabrics, fire-fighting foams, etc. Their toxic 

effects include potential for endocrine disrupting (ED) activity among others. Unfortunately, the available amount of experimental data for these pollutants is limited. Therefore the use of predictive 

strategies such as QSAR/QSPR is recommended under the REACH regulation, to fill the data gaps and also to allow the screening and prioritization of chemicals for experiments, with a consequent 

reduction of costs and of the number of tested animals. In this study the T4-TTR competing potency of 24 PFCs has been modelled by two different QSAR approaches: multiple linear regression, by 

Ordinary Least Squares (OLS), and classification, by K-NN method. Models were developed taking into account the OECD principles for QSAR validation for regulatory purposes [1].
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� The here proposed MLR model (1) is robust and predictive. However more experimental 

data would be necessary to develop QSARs with wider applicability.

� Interpretability of descriptors: JGI10 (2D) is mainly related to molecular size of PFCs (n° C), 

while HATS7m (3D) takes also into account the different functional groups. 

� Both the here proposed MLR model (1) and the model developed using the same data-set 

as Weiss 2009 (2) show significantly higher performance than the existing model by Weiss et 

al. (2009) [2]. 
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EXPERIMENTAL DATA SET

24 Perfluorinated compounds with different carbon chain length (4-14 C), fluorination degree and functional groups (carboxylates, 

sulfonates, sulfonamides, alcohols, etc.) [2]. 
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ENDPOINT:ENDPOINT: ICIC50 50 T4T4--TTR COMPETING POTENCY TTR COMPETING POTENCY [2][2]. To obtain increasing trends of toxicity, the . To obtain increasing trends of toxicity, the 

experimental values were transformed into the logarithm of the iexperimental values were transformed into the logarithm of the inverse nverse nMnM concentrations concentrations 

(Log1/IC(Log1/IC5050).).

ALGORITHM:ALGORITHM: Multiple linear regression was performed by Multiple linear regression was performed by Ordinary Least Squares Ordinary Least Squares regression regression 

(OLS) method. (OLS) method. All Subset SelectionAll Subset Selection method was applied to select the best variables method was applied to select the best variables [[33]]..

APPLICABILITY DOMAIN:APPLICABILITY DOMAIN: verified by verified by leverage approach. leverage approach. 

TOOLS of VALIDATION:TOOLS of VALIDATION: goodnessgoodness--ofof--fit andfit and internal stability were verified byinternal stability were verified by QQ22
LOOLOO, Q, Q22

BOOTBOOT, , 

RR22/Q/Q22
YSYS and RMSE; external and RMSE; external predictivitypredictivity was measured by calculating Qwas measured by calculating Q22

EXTEXT on the additional on the additional 

validation set (3 PFAS) validation set (3 PFAS) [4[4--5]5]..

MOLECULAR DESCRIPTORS

The Semi-empirical method AM1 in HYPERCHEM program (ver. 

7.03 for Windows, 2002) was used to draw and optimize 

(minimum energy conformation) the structures of the studied 

Perfluorinated compounds. 

444 molecular descriptors, which encode the mono-, bi- and 

tri-dimensional structural information, were calculated from the 

optimized structures by using the software DRAGON (ver. 5.5 

for Windows, 2007).

MOLECULAR DESCRIPTORSMOLECULAR DESCRIPTORS

The SemiThe Semi--empirical method AM1 in empirical method AM1 in HYPERCHEMHYPERCHEM program program ((verver. . 

7.03 for Windows, 2002) was used to draw and optimize 7.03 for Windows, 2002) was used to draw and optimize 

((minimum energy conformation) the structures of the studied minimum energy conformation) the structures of the studied 

PerfluorinatedPerfluorinated compounds. compounds. 

444 molecular descriptors, which encode the mono444 molecular descriptors, which encode the mono--, bi, bi-- and and 

tritri--dimensional structural information,dimensional structural information, were calculated from the were calculated from the 

optimized structures by using the software DRAGON (optimized structures by using the software DRAGON (verver. 5.5 . 5.5 

for Windows, 2007).for Windows, 2007).
NN--EtFOSEEtFOSE 22--(N(N--ethylperfluoroethylperfluoro--11--octane octane sulfonamidosulfonamido) ethanol) ethanol

NN--MeFOSEMeFOSE 22--(N(N--methylperfluoromethylperfluoro--11--octane octane sulfonamidosulfonamido) ethanol) ethanol

7H7H--PFHpAPFHpA 7H7H--Perfluoroheptanoic acidPerfluoroheptanoic acid
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PFBS PFBS NonafluorobutaneNonafluorobutane sulfonatesulfonate

LL--PFDS PFDS PerfluorodecanePerfluorodecane sulfonatesulfonate
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N,NN,N--Me2FOSA Me2FOSA N,NN,N--dimethyldimethyl perfluorooctaneperfluorooctane sulfonamidesulfonamide
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FOSA FOSA PerfluorooctanePerfluorooctane sulfonamidesulfonamide

FTOH (8:2) FTOH (8:2) 22--Perfluorooctyl ethanolPerfluorooctyl ethanol

FTOH (6:2) FTOH (6:2) 22--Perfluorohexyl ethanolPerfluorohexyl ethanol

PFAAPFAA
Perfluorinated alkyl acidsPerfluorinated alkyl acids

PFAS were converted into the
respective  sulfonic acids and used 
as an additional VALIDATION SET.

PFAS Perfluorinated alkyl sulfonates Perfluorinated alkyl sulfonamides

Perfluorinated 
telomer alcohol

Perfluorinated alkyl 
sulfonamido-ethanols

••PFBSPFBS was identified as an outlier bywas identified as an outlier by aa preliminarpreliminar

PLS model PLS model [2][2] andand it fallsit falls out of the AD ofout of the AD of ourour model. model. 

Therefore it was excluded fromTherefore it was excluded from the the validationvalidation

••datadata--set.set.

Two classification models are here proposed to predict T4-TTR competing potency of PFCs:Two classification models are here proposed to predict T4Two classification models are here proposed to predict T4--TTR competing potency of TTR competing potency of PFCsPFCs::
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• Linear carbon chains
• Average molecular size (6 < n°C  < 11)
• Fully fluorinated chains

• Mainly with –COOH as a functional group 

•• Linear carbon chainsLinear carbon chains

•• Average molecular sizeAverage molecular size (6 < n°C  < 11)(6 < n°C  < 11)

•• Fully fluorinated chainsFully fluorinated chains

•• Mainly withMainly with ––COOHCOOH asas aa functional group functional group 

HATS6m:HATS6m: getaway descgetaway desc.,., weighted by weighted by 
atomic massesatomic masses (3D)(3D)

�� molecular sizemolecular size ++ functional groupsfunctional groups

nHnH: n° of: n° of hydrogen atomshydrogen atoms (0D) (0D) 

�� functional groupsfunctional groups
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CLASSES:CLASSES: C1=INACTIVE (no T4C1=INACTIVE (no T4--TTRTTRcompcomp potency detected); C2=ACTIVE (low to high T4potency detected); C2=ACTIVE (low to high T4--TTRTTRcompcomp

potency). potency). Classification criteria according to Hamers Classification criteria according to Hamers etet al.,al., 2006 2006 [6][6]..

ALGORITHM:ALGORITHM: KK--NN method was applied to model the two classes of T4NN method was applied to model the two classes of T4--TTRTTRcompcomp
[7][7]. The selection . The selection 

of the best subset of variables was realised by the of the best subset of variables was realised by the All Subset SelectionAll Subset Selection method. SPLITTING: data method. SPLITTING: data 

were split into training and prediction set by Random selection were split into training and prediction set by Random selection (50%).(50%).

APPLICABILITY DOMAIN:APPLICABILITY DOMAIN: verified by verified by descriptor’s range.descriptor’s range.

TOOLS of VALIDATION:TOOLS of VALIDATION: IInternalnternal stability was verified by stability was verified by SnSn, Sp, NER, Sp, NERCVCV. For the external validation, . For the external validation, 

NERNEREXTEXT was calculated for the prediction set and for the additional vawas calculated for the prediction set and for the additional validation set (5 PFAS) lidation set (5 PFAS) [4][4]..

PARAMETERS PARAMETERS [8][8]:: SnSn = TP/(TP+FN)= TP/(TP+FN) SpSp = TN/(TN+FP)       NER = (TP+TN)/Tot= TN/(TN+FP)       NER = (TP+TN)/Tot
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The proposed regression and classification QSAR models are simple tools for the rapid screening of the T4-TTR competing potency of perfluorinated compounds and can be used for the

prioritization of more hazardous chemicals.  
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