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Increasing concern is shown by the scientific community, regulators, and the public, about endocrine-disrupting chemicals (EDCs) that are adversely affecting human and wildlife health through a 

variety of mechanisms of toxicity. The potential activity as endocrine disruptors (EDs) of Brominated Flame Retardants (BFRs), has already been experimentally demonstrated and deserves particular 

attention since the production and use of potential EDs will be strictly regulated through the authorization process of the REACH regulation. To overcome the problem of insufficient experimental data 

necessary to complete the toxicological profile of these chemicals, the QSAR/QSPR approach can be applied to predict the missing information [1]. In this study QSAR classification models were 

developed, according to the OECD principles, to predict endocrine disrupting potencies of BFRs. 

Increasing concern is shown by the scientific community, regulatIncreasing concern is shown by the scientific community, regulators, and the public, about ors, and the public, about endocrineendocrine--disruptingdisrupting chemicals (chemicals (EDCsEDCs) that are adversely affecting human and wildlife health through) that are adversely affecting human and wildlife health through a a 

variety of mechanisms of toxicity.variety of mechanisms of toxicity. The potential activity as endocrine disruptors (EDs) of The potential activity as endocrine disruptors (EDs) of BrominatedBrominated Flame Retardants (Flame Retardants (BFRsBFRs), has already been experimentally demonstrated and deserves par), has already been experimentally demonstrated and deserves particular ticular 

attention since the production and use of potential EDs will be attention since the production and use of potential EDs will be strictly regulated through the authorization process of the strictly regulated through the authorization process of the REACHREACH regulation. To overcome the problem of insufficient experimentaregulation. To overcome the problem of insufficient experimental data l data 

necessary to complete the toxicological profile of these chemicanecessary to complete the toxicological profile of these chemicals, the QSAR/QSPR approach can be applied to predict the missingls, the QSAR/QSPR approach can be applied to predict the missing information information [1][1]. . In this study In this study QSAR classificationQSAR classification models were models were 

developed, according to the developed, according to the OECD principlesOECD principles, to predict endocrine disrupting potencies of, to predict endocrine disrupting potencies of BFRsBFRs. . 

� New CLASSIFICATION models were developed for different endpoints related to the endocrine 

potency of BFRs. 

� The proposed models were selected by balancing:

- number of false negative FN (highest Sn)

- external predictivity (NEREXT)

- simplicity and interpretability of descriptors

� The most dangerous compounds and/or important structural alerts were identified for each ED

activity (i.e., nArOH, F04[O-Br]).

� According to literature [2, 6], ED activity of BFRs (DR/ER/AR/PRant, T4-TTRcomp, E2SULTinh) is strongly

increased by the presence of -OH group on the aromatic ring.

� The variability of interactions of the studied chemicals with different receptors prevented us 

from defining a general ranking based on their ED potency.

� The here proposed classification models are simple tools, with defined Applicability Domains, 

which can be applied to screen BFRs in relation to their ED activity and, for identification of 

safer alternatives. This is in agreement with requirements of REACH regulation (Title VII, Chapter 

1, Article 57-f).
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VALIDATION and Applicability Domain (AD) Data were split into training set (development of the models) and prediction set (validation of the 

models) by random selection (30%). Models were developed taking into account the OECD principles for QSAR validation for regulatory purposes [5].     

• Internal and external validation: Sn (sensitivity), Sp (specificity), NER (non-error rate), NEREXT.

• Applicability Domain (AD% for 243 BFRs) verified by descriptor’s range.
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The chemical structures of The chemical structures of BFRsBFRs were drawn using the Semiwere drawn using the Semi--empirical method AM1 in empirical method AM1 in 

the HYPERCHEM program (the HYPERCHEM program (verver. 7.03 for Windows, 2002) and used as input files for . 7.03 for Windows, 2002) and used as input files for 

descriptors calculation.descriptors calculation. 701 molecular descriptors (0D; 1D; 2D; 3D) were computed 701 molecular descriptors (0D; 1D; 2D; 3D) were computed 

by the software by the software DRAGONDRAGON ((verver. 5.5 for Windows, 2007). 5.5 for Windows, 2007)..
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