QSAR models for the prediction of endocrine disruption potencies of
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INTRODUCTION

Increasing concern is shown by the scientific community, regulators, and the public, about endocrine-disrupting chemicals (EDCs) that are adversely affecting human and wildlife health through a
variety of mechanisms of toxicity. The potential activity as endocrine disruptors (EDs) of Brominated Flame Retardants (BFRs), has already been experimentally demonstrated and deserves particular
attention since the production and use of potential EDs will be strictly regulated through the authorization process of the REACH regulation. To overcome the problem of insufficient experimental data
necessary to complete the toxicological profile of these chemicals, the QSAR/QSPR approach can be applied to predict the missing information I'l. In this study QSAR classification models were
developed, according to the OECD principles, to predict endocrine disrupting potencies of BFRs.

1, Article 57-f).

v The variability of interactions of the studied chemicals with different receptors prevented us
from defining a general ranking based on their ED potency.
v The here proposed classification models are simple tools, with defined Applicability Domains,
which can be applied to screen BFRs in relation to their ED activity and, for identification of
safer alternatives. This is in agreement with requirements of REACH regulation (Title VII, Chapter
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